Effect of annealing on the structural, optical, electrical and photocatalytic activity of ZrO2–TiO2 nanocomposite thin films prepared by sol–gel dip coating technique

  • V. S. Anitha
  • S. Sujatha Lekshmy
  • K. Joy


ZrO2–TiO2 nanocomposite thin films were deposited onto quartz substrate by sol–gel dip coating technique. The structural, morphological, optical, electrical and photocatalytic properties of the films were studied for different annealing temperatures (500, 800 and 1200 °C). X-ray diffraction pattern of films annealed at 500 °C showed amorphous nature. Increase in crystallinity was observed in the films annealed at higher temperature. Films annealed at higher temperature showed the formation of orthorhombic ZrTiO4 phase. Field emission scanning electron microscopy (FESEM) revealed crack free surface and surface roughness was found to increase with increase in annealing temperature. Energy dispersive X-ray analysis confirmed the presence of Zr, Ti and O in these films. Band gap of the films decreased from 3.93 to 3.50 eV with increase in annealing temperature. Photoluminescence spectra of the films exhibited emission peaks in both UV and visible region of the electromagnetic spectra. The conductivity of the films increased with increase in annealing temperature. Photocatalytic activity of these films evaluated by monitoring the degradation of methylene blue solution increased with increase in annealing temperature.


TiO2 Methylene Blue Photocatalytic Activity Oxygen Vacancy TiO2 Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Mahiyar, M.A. Behnajady, N. Modirshahla, Characterization and photocatalytic activity of SiO2–TiO2 mixed oxide nanoparticles prepared by sol–gel method. Indian J. Chem. 49 A, 1593–1600 (2010)Google Scholar
  2. 2.
    S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, A simple sonochemical synthesis and characterization of CdWO4 nanoparticles and its photocatalytic application. J. Mater. Sci. Mater. Electron. 27, 3240–3244 (2016)CrossRefGoogle Scholar
  3. 3.
    S.M. Hosseinpour-mashkani, A. Sobhani-Nasab, M. Mehrzad, Controlling the synthesis SrMoO4 nanostructures and investigation its photocatalyst application. J. Mater. Sci. Mater. Electron. 27, 5758–5763 (2016)CrossRefGoogle Scholar
  4. 4.
    S.S. Hosseinpour-Mashkani, S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, Synthesis and characterization of rod-like CaMoO4 nanostructure via free surfactant sonochemical route and its photocatalytic application. J. Mater. Sci. Mater. Electron. 27, 4351–4355 (2016)CrossRefGoogle Scholar
  5. 5.
    S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Precipitation synthesis, characterization, morphological control, and photocatalyst application of ZnWO4 nanoparticles. J. Electron. Mater. 45, (2016). doi: 10.1007/s11664-016-4532-3
  6. 6.
    S. Sriram, A. Thayumanavan, Optical and electrical properties of nitrogen doped ZnO thin films prepared by low cost spray pyrolysis technique. J. Electron Devices 15, 1215–1224 (2012)Google Scholar
  7. 7.
    L. Liang, Y. Sheng, Y. Xu, D. Wu, Y. Sun, Optical properties of sol–gel derived ZrO2–TiO2 composite films. Thin Solid Films 515, 7765–7771 (2007)CrossRefGoogle Scholar
  8. 8.
    L.J. Tomar, B.S. Chakrabarty Synthesis, structural and optical properties of TiO2–ZrO2 nanocomposite by hydrothermal method. Adv. Mater. Lett. 4(1), 64–67 (2013)CrossRefGoogle Scholar
  9. 9.
    X. Fu, L.A. Clark, Q. Yang, M.A. Anderson, Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2. Environ. Sci. Technol. 30(2), 647–653 (1996)CrossRefGoogle Scholar
  10. 10.
    S.M. Hosseinpour-mashkani, A. Sobhani-Nasab, Simple synthesis and characterization of copper tungstate nanoparticles: investigation of surfactant effect and its photocatalyst application. J. Mater. Sci. Mater. Electron. 27, 7548–7553 (2016)CrossRefGoogle Scholar
  11. 11.
    A. Sobhani-Nasab, M. Behpour, Synthesis, characterization, and morphological control of Eu2Ti2O7 nanoparticles through green method and its photocatalyst application. J. Mater. Sci. Mater. Electron. 27, 11946–11951 (2016)CrossRefGoogle Scholar
  12. 12.
    L.G. Karakchiev, T.M. Zima, T.M. Zima, N.Z. Lyakhov, Sol of hydrated ZrO2–TiO2 system. Colloid J. 63(4), 426–430 (2001)CrossRefGoogle Scholar
  13. 13.
    N. Duan, H. Lin, L. Li, J. Hu, L. Bi, H. Lu, X. Weng, J. Xie, L. Deng, ZrO2–TiO2 thin films: a new material system for mid - infrared integrated photonics. Opt. Mater. Express 3(9), 1537 (2013)CrossRefGoogle Scholar
  14. 14.
    G.N. Shao, S.M. Imran, S.J. Jeon, M. Engole, N. Abbas, M.S. Haider, S.J. Kang, H.T. Kim, Sol–gel synthesis of photoactive zirconia–titania from metal salts and investigation of their photocatalytic properties in the photodegradation of methylene blue. Powder Technol. 258, 99–109 (2014)CrossRefGoogle Scholar
  15. 15.
    Q. Yuan, Y. Liu, L.L. Li, Z.X. Li, C.J. Fang, W.T. Duan, X.-G. Li, C.-H. Yan, Highly ordered mesoporous titania–zirconia photocatalyst for applications in degradation of rhodamine-B and hydrogen evolution. Microporous Mesoporous Mater. 124, 169–178 (2009)CrossRefGoogle Scholar
  16. 16.
    X.M. Wang, P. Xiao, Solvothermal synthesis of titania–zirconia composite. J. Mater. Res. 21(2), 355–368 (2006)CrossRefGoogle Scholar
  17. 17.
    V.S. Anitha, S. Sujatha Lekshmy, K. Joy, Effect of annealing temperature on optical and electrical properties of ZrO2–SnO2 nanocomposite thin films. J. Mater. Sci. Mater. Electron. 4(24), 4340–4345 (2013)CrossRefGoogle Scholar
  18. 18.
    R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E Sci. Instrum. 16, 1214–1222 (1983)CrossRefGoogle Scholar
  19. 19.
    T. Ivanova, A. Harizanova, T. Koutzarova, N. Krins, B. Vertruyen, Electrochromic TiO2, ZrO2 and TiO2–ZrO2 thin films by dip-coating Method. Mater. Sci. Eng. B 165(3), 212–216 (2009)CrossRefGoogle Scholar
  20. 20.
    B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn. (Prentice Hall, Upper Saddle River, 2001), p. 388Google Scholar
  21. 21.
    J. Jeong, S.P. Choi, K.J. Hong, J. Korean Phys. Soc. 48, 960–963 (2006)Google Scholar
  22. 22.
    S. Reiche, R. Blume, X.C. Zhao, D. Su, E. Kunkes, M. Behrens, R. Schlogl, Reactivity of mesoporous carbon against water—An in-situ XPS study. Carbon 77, 175–183 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Yang, Y. Jiang, Z. Yuan, X. Wang, Q. Fang, Effect of carbon content on the microstructure and properties of W–Si–C–N coatings fabricated by magnetron sputtering. Mater. Sci. Eng. B 177, 1120–1125 (2012)CrossRefGoogle Scholar
  24. 24.
    S. Sujatha Lekshmy, V.S. Anitha, P.V. Thomas, K. Joy, Magnetic properties of Mn-doped SnO2 thin films Prepared by the sol–gel dip coating method for dilute magnetic semiconductors. J. Am. Ceram. Soc. 18 (2014). doi: 10.1111/jace.13084
  25. 25.
    M.S. Kim, Y.D. Ko, J.H. Hong, M.C. Jeong, J.M. Myoung, I. Yun, Characteristics and processing effects of ZrO2 thin films grown by metal-organic molecular beam epitaxy. Appl. Surf. Sci. 227, 387–398 (2004)CrossRefGoogle Scholar
  26. 26.
    B. Demri, M. Hage-Ali, M. Moritz, J.L. Kahn, D. Muster, X-ray photoemission study of the calcium/titanium dioxide interface. Appl. Surf. Sci. 108, 245–249 (1997)CrossRefGoogle Scholar
  27. 27.
    M.M. Hasan, A.S.M.A. Haseeb, R. Saidur, H.H. Masjuki, Effects of annealing treatment on optical properties of anatase TiO2 thin films. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 2, 410–414 (2008)Google Scholar
  28. 28.
    X. Wang, G. Wu, B. Zhou, J. Shen, Thermal annealing effect on optical properties of binary TiO2–SiO2 sol–gel coatings. Materials 6, 76–84 (2013)CrossRefGoogle Scholar
  29. 29.
    A.F.A. Razak, S. Devadason, C. Sanjeeviraja, V. Swaminathan, Effect of annealing on structural and optical properties of ZnO thin films by sol gel technique. Chalcogenide Lett. 8, 511–519 (2011)Google Scholar
  30. 30.
    T. Zhang, L Liu, Q Qi, S. Li, G. Lu, Development of microstructure In/Pd-doped SnO2 sensor for Low-level CO detection. Sens. Actuators B 139, 287–291 (2009)CrossRefGoogle Scholar
  31. 31.
    H.A. Bioki, M.B. Zarandi, Effects of annealing and thickness on the structural and optical properties of crystalline ZnS thin films prepared by PVD method. Int. J. Opt. Photonics 5, 121–128 (2011)Google Scholar
  32. 32.
    B.K. Gupta, G. Kedawat, Y. Agrawal, P. Kumar, J. Dwivedi, S.K. Dhawan, A novel strategy to enhance ultraviolet light driven photocatalysis from graphene quantum dots infilled TiO2 nanotube arrays. RSC Adv. 5, 10623–10631 (2015)CrossRefGoogle Scholar
  33. 33.
    R. Mohan, J. Drbohlavova, J. Hubalek, Water-dispersible TiO2 nanoparticles via a biphasic solvothermal reaction method. Nanoscale Res. Lett. 8(1), 503 (2013). doi: 10.1186/1556-276X-8-503 CrossRefGoogle Scholar
  34. 34.
    I.J. Berlin, J.S. Lakshmi, S. Sujatha Lekshmy, G.P. Daniel, P.V. Thomas, K. Joy, Effect of sol temperature on the structure, morphology, optical and photoluminescence properties of nanocrystalline zirconia thin films. J. Sol-Gel Sci. Technol. 58, 669–676 (2011)CrossRefGoogle Scholar
  35. 35.
    P. Zhang, Y. Yu, E. Wang, J. Wang, J. Yao, Y. Cao, Structure of nitrogen and zirconium Co-doped titania with enhanced visible-light photocatalytic activity. ACS Appl. Mater. Interfaces. doi: 10.1021/am405510a
  36. 36.
    B. Neppolian, Y. Kim, M. Ashokkumar, H. Yamashita, H. Choi, Preparation and properties of visible light responsive ZrTiO4/Bi2O3 photocatalysts for 4-chlorophenol decomposition. J. Hazard. Mater. 182, 557–562 (2010)CrossRefGoogle Scholar
  37. 37.
    P. Chetri, P. Basyach, A. Choudhury, Structural, optical and photocatalytic properties of TiO2/SnO2 and SnO2/TiO2 core-shell nanocomposites: an experimental and DFT investigation. Chem. Phys. 434, 1–10 (2014)CrossRefGoogle Scholar
  38. 38.
    A.K. Srivastava, M. Deepa, S. Bhandari, H. Fuess, Tunable nanostructures and crystal structures in titanium oxide Films. Nanoscale Res. Lett. 4, 54–62 (2009)CrossRefGoogle Scholar
  39. 39.
    P.B. Nair, V.B. Justinvictor, G.P. Daniel, K. Joy, V. Ramakrishnan, P.V. Thomas, Effect of RF power and sputtering pressure on the structural and optical properties of TiO2 thin films prepared by RF magnetron sputtering. Appl. Surf. Sci. 257, 10869–10875 (2011)CrossRefGoogle Scholar
  40. 40.
    Z. Li, H. Meng, Organic Light Emitting Materials and Devices. (Taylor & Francis, Routledge, 2007)Google Scholar
  41. 41.
    D. Wojcieszak, D. Kaczmarek, J. Domaradzki, M. Mazur, Correlation of photocatalysis and photoluminescence effect in relation to the surface properties of TiO2:Tb thin films. Int. J. Photoenergy (2013). doi: 10.1155/2013/526140 Google Scholar
  42. 42.
    L.J. Lai, H.C. Lu, H.K. Chen, B.M. Cheng, M.I. Lin, T.C. Chu, J. Electron Spectrosc. Relat. Phenom. 865, 144–147 (2005)Google Scholar
  43. 43.
    Y. Jia, D. Du, J. Bai, J. Ding, Q. Zhong, X. Ding, Characterization and activity of N doped TiO2 supported VPO catalysts for NO oxidation. Atmos. Pollut. Res. 6, 184–190 (2015)CrossRefGoogle Scholar
  44. 44.
    K. Pirkanniemi, M. Sillanpää, Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere 48(10), 1047–1060 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Thin Film Lab, Post Graduate and Research Department of PhysicsMar Ivanios CollegeThiruvananthapuramIndia
  2. 2.Department of PhysicsNSS College PandalamPathanamthittaIndia
  3. 3.Department of PhysicsHeera College of Engineering and TechnologyThiruvananthapuramIndia

Personalised recommendations