Study of polymer Graphene Quantum Dot nanocomposites

  • D. Arthisree
  • Girish M. Joshi


We report a synthesis of well dispersed Graphene Quantum Dot (GQD) nanocomposites in a host cellulose acetate (CA) polymer system. It was systematically characterized using X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM), Atomic force microscope (AFM), Fourier transform infrared spectroscopy (FTIR) and Ultra-violet and Visible (UV–Vis), Photoluminescence (PL) techniques. Carboxylic and hydroxyl functional groups of GQD have chemically interacted with hydroxyl functional group of polymer network that leads to stabilization of the nanocomposite system. We observed that the amorphous to semi-crystalline phase disparity as a function of GQD loading which predominantly influenced the properties of nanocomposites. Decreased direct band gap of nanocomposites was analyzed by UV–Vis spectroscopic technique. Due to uniform dispersion and optimal loading of GQD in CA matrix an intense photoluminescence spectrum was observed. The existence of GQD occupied in the polymer system was examined by SEM, AFM and TEM microscopic techniques. It has been found that electrical conductivity of the composite was depended on temperature and similarly, decreased softness was related to the function of GQD loading. This investigation can be extendable for the devolvement of optical and electrical devices.


Light Emit Diode Cellulose Acetate Complex Impedance Spectrum Cellulose Acetate Film Pure Cellulose Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors are highly thankful for Naval Research Board, NBR, DRDO, New Delhi project No. 259/MAT/11–12, for providing instrumentation facility for electrical characterization. Authors would also like to thank VIT University for providing the SEM under DST-FIST project, TEM (FEI-TECHNAI G2-20 TWIN) and other characterization techniques like XRD, FTIR, UV–Vis, PL facilities.


  1. 1.
    V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Chem. Rev 115, 4744–4822 (2015)CrossRefGoogle Scholar
  2. 2.
    X. Pan, W. Qiu, E. Skafidas, Sci. Rep. 6, 36167 (2016)CrossRefGoogle Scholar
  3. 3.
    S. Bak, D. Kim, H. Lee, Curr. Appl. Phys. 16, 1192–1201 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Zhou, H. Xu, W. Gan, Q. Yuan, RSC Adv. 1–14 (2016)Google Scholar
  5. 5.
    G. Rajender, P.K. Giri, J. Mater. Chem. C 1–41 (2016)Google Scholar
  6. 6.
    Z. Li, Z. Li, Y. Wu, J. Nan, H. Wang, X. Zhang, J. Zhang, B. Yang, RSC Adv. 6, 97853–97860 (2016)CrossRefGoogle Scholar
  7. 7.
    A.F. de Faria, A.C.M. de Moraes, P.F. Andrade, D.S. de Silva, M. do Carmo Gonçalves, L.O. Alves. Cellulose (2016). doi: 10.1007/s10570-016-1140-6 Google Scholar
  8. 8.
    A.D. Lima, M.C. Paiva, A. Machado, J. Polym. Eng. (2016). doi: 10.1515/polyeng-2015-0388 Google Scholar
  9. 9.
    N. Jahan, W. Khan, A. Azam, A. H. Naqvi, AIP Conf. Proc. 1731, 050061-1–050061-3 (2016). doi: 10.1063/1.4947715 Google Scholar
  10. 10.
    P. Kumar, A. Kumar, K. Y. Cho, T. K. Das, V. Sudarsan, AIP Adv. 7, 015103 (2017) doi: 10.1063/1.4973535 CrossRefGoogle Scholar
  11. 11.
    L. Wang, S. Tricard, P. Yue, J. Zhao, W. Shen, J. Bios 77, 1112–1118 (2016)Google Scholar
  12. 12.
    A. Kovalchuk, K. Huang, C. Xiang, A.A. Marti, J.M. Tour, ACS. Appl. Mater. Interfaces 7, 26063–26068 (2015)CrossRefGoogle Scholar
  13. 13.
    J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang, C. Li, New J. Chem. 36, 97–101 (2012)CrossRefGoogle Scholar
  14. 14.
    L.M. Long, N.N Dinh, T.Q Trung, J. Nano Mater. (2016) doi: 10.1155/2016/5849018 Google Scholar
  15. 15.
    H.C. Lim, S.H. Min, E. Lee, J. Jang, S.H. Kim, J.I. Hong, ACS Appl. Mater. Interface (2015). doi: 10.1021/acsami.5b02434 Google Scholar
  16. 16.
    M. Dinari, M.M. Momeni, M. Goudarzirad, J. Mater. Sci. (2015). doi: 10.1007/s10853-015-9605-9 Google Scholar
  17. 17.
    C. Lu, L. Zhang, C. Xu, Z. Yin, S. Zhou, J. Wang, R. Huang, C. Zhang, W. Yang, J. Lu, Adv. RSC 6, 67400 (2016)CrossRefGoogle Scholar
  18. 18.
    A.S.T. M., Ahmad, Principles of Nanoscience and Nanotechnology: (Narosa publishing house Pvt. Ltd, New Delhi, 2010), p 93Google Scholar
  19. 19.
    M. Gopiraman, K. Fujimori, K. Zeeshan, B. S. Kim, I. S. Kim, Express Polym. Lett. 7, 6:554–563, (2013)CrossRefGoogle Scholar
  20. 20.
    V.K. Suhas, P.J.M. Gupta,, R. Carrot, M. Singh, Chaudhary, S. Kushwaha. J. biortech 216, 1066–1076 (2016)Google Scholar
  21. 21.
    M.D.E. Uddin, R.M. Layek, H.Y. Kim, N.H. Kim, D. Hui, J.H. Lee, J. Compos. 90, 223–231, (2016)CrossRefGoogle Scholar
  22. 22.
    H. Qin, T. Gong, Y. Jin, Y. Cho, C. Shin, C. Lee, T. Kim, J. Carbon 94: 181–188, (2015)CrossRefGoogle Scholar
  23. 23.
    J. Zhang, Y.-q. Ma, N. Li, J.L. Zhu, T. Zhang, W. Zhang, B. Liu, J. Nano Mater. (2016). doi: 10.1155/2016/9245865 Google Scholar
  24. 24.
    J.G. Mc Nally, W. Vanselow, JACS 52: 3846–3856, (1930).CrossRefGoogle Scholar
  25. 25.
    Z. Gan, H. Xu, Y. Hao, Nanoscale (2016). doi: 10.1039/C6NR00605A Google Scholar
  26. 26.
    B. Kimx, S.Y. Kang, D.K. Kim, S.H. Moon, E.H. Park, S.K. Kang, J. Noncrysol. 412, 45–48, (2015).CrossRefGoogle Scholar
  27. 27.
    S. Anitha, B. Brabu, D.J. Thiruvadigal, C. Gopalakrisnan, S.T. Natarajan. J. Carbpol. 97, 856–863 (2013)Google Scholar
  28. 28.
    W.S. Kuo, C.L.L Hsu, H.H. Chen, C.Y. Chang, H.F. Kao, L.C.S. Chou, Y.C. Chen, S.J. Chen, W.T. Chang, S.W. Tseng, J.Y. Wang, Y.C. Pu, Nanoscale (2016). doi: 10.1039/c6nr02614a Google Scholar
  29. 29.
    Q Li, Q Z Xue, X.L Gao, Q.B Zheng, Express Polym. Lett. 3, 769–777 (2009)CrossRefGoogle Scholar
  30. 30.
    A. Szentes, Cs. Varga, G. Horvath, L. Bartha, Z. Konya, H. Haspel, J. Szel, A. Kukovecz, eXPRESS Polym. Lett. 6, 494–502, (2012)CrossRefGoogle Scholar
  31. 31.
    D.P. Kepi, Z.M. Markovi, S.P. Jovanovi, D.B. Perusko, M.D. Budimir, I.D.H. Antunovi, V.B. Pavlovi, B.M.T. Markovi, J. Synthmet 198, 150–154 (2014)Google Scholar
  32. 32.
    Q. Wang, Y. Shen, J. Tan, K. Xu, T. Shen, M. Cao, F. Gu, L. Wang, Proc. SPIE 9068, 90680, (2015)Google Scholar
  33. 33.
    D. Ciolacu, F. Ciolacu, V. Popa, Cellul. Chem. Technol. 45(1–2), 13–21, (2011).Google Scholar
  34. 34.
    F.A. Permatasari, A.H. Aimon, F. Iskandar, T. Ogi, K. Okuyama, Sci. Rep. 6, 21042 (2016)CrossRefGoogle Scholar
  35. 35.
    D. Jiang, Y. Chen, N. Li, W. Li, Z. Wang, J. Zhu, H. Zhang, B. Liu, S. Xu, J. Pols Org. (2015). doi: 10.1371/journal.pone:0144906 Google Scholar
  36. 36.
    S. Kumar, A.K. Ojha, B. Ahmed, A. Kumar, J. Das, A. Materny, Mater. Today Commun. 11, 76–86 (2017)CrossRefGoogle Scholar
  37. 37.
    L. Baldino, M. Sarno, S. Cardea, S. Irusta, P. Ciambelli, J. Santamaria, E. Reverchon, Ind. Eng. Res. (2015). doi: 10.1021/acs.iecr.5b01452 Google Scholar
  38. 38.
    A.C.M. de Moraes, P.F. Andrade, A.F de Faria, M.B Simoes, F.C.C.S Salmomao, E.B. Barros, M. do Carmo Goncalves, O.L. Alves. J. Carbpol 123, 217–227 (2015)Google Scholar
  39. 39.
    K.A. Bhat, P. Rajangam, S. Dharmalingam. J. Mater. Sci. 47, 1038–1045 (2012)CrossRefGoogle Scholar
  40. 40.
    M. Hasanzadeh, A. Karimzadeh, S. Sadeghi, A. Mokhtarzadeh, N. Shadjou, A. Jouyban, J. Mater. Sci. 27, 6488–6495 (2016)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Polymer Nanocomposite Laboratory, Centre for Crystal growthVIT UniversityVelloreIndia

Personalised recommendations