Hydrothermal synthesis of WO3/Fe2O3 nanosheet arrays on iron foil for photocatalytic degradation of methylene blue

  • Rui Lei
  • Hongwei Ni
  • Rongsheng Chen
  • Bowei Zhang
  • Weiting Zhan
  • Yang Li


The growth of WO3/Fe2O3 nanosheet arrays on iron foil was fabricated by a facile and efficient hydrothermal treatment. The morphology and optical property of as-prepared WO3/Fe2O3 nanocomposites were characterized by using field-emission scanning electron microscopy, energy-dispersive X-ray spectrometry, transmission electron microscopy, X-ray diffraction and UV–Vis diffuse reflectance spectra. The photocatalytic activity of the as-synthesized WO3/Fe2O3 nanocomposite was evaluated by the degradation of methylene blue (MB) in aqueous solution under visible-light (λ > 420 nm) irradiation. It was observed that the sample obtained with a hydrothermal reaction time for 2 h exhibited the best photocatalytic performance. The kinetics of the MB degradation was found to comply with the Langmuir–Hinshelwood model. The photocatalytic efficiencies of WO3/Fe2O3NSAs correlated with the effective separation of photogenerated electron–hole pairs. Hence, the WO3/Fe2O3NSAs are excellent candidate for visible-light-driven photocatalysts.


Fe2O3 Methylene Blue Photocatalytic Activity Tungsten Oxide Photocatalytic Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (Nos. 51171133, 51471122, and 51601136) and the Key Program of Natural Science Foundation of Hubei Province of China (No. 2015CFA128).


  1. 1.
    E. Mena, A. Rey, E.M. Rodriguez, F.J. Beltran, Reaction mechanism and kinetics of DEET visible light assisted photocatalytic ozonation with WO3 catalyst. Appl. Catal. B Environ 202, 460–472 (2017)CrossRefGoogle Scholar
  2. 2.
    L. Zhu, M. Hong, G.W. Ho, Fabrication of wheat grain textured TiO2/CuO composite nanofibers for enhanced solar H2 generation and degradation performance. Nano Energy 11, 28–37 (2015)CrossRefGoogle Scholar
  3. 3.
    S.S. Thind, K. Rozic, F. Amano, A. Chen, Fabrication and photoelectrochemical study of WO3-based bifunctional electrodes for environmental applications. Appl. Catal. B Environ. 176, 464–471(2015)Google Scholar
  4. 4.
    R. Mukherjee, A. Kushwaha, P.P. Sahay, Spray-deposited nanocrystalline WO3 thin films prepared using tungsten hexachloride dissolved in N-N dimethylformamide and influence of in doping on their structural, optical and electrical properties. Electron. Mater. Lett 2, 401–410 (2014)CrossRefGoogle Scholar
  5. 5.
    H. Xia, W. Xiong, C.K. Lim, Q.F. Yao, Y.D. Wang, J.P. Xie, Hierarchical TiO2-B nanowire @ a-Fe2O3 nanothorn core-branch arrays as superior electrodes for lithium-ion microbatteries. Nano Res. 7, 1797–1808 (2014)CrossRefGoogle Scholar
  6. 6.
    S.M. Lam, J.C. Sin, A.Z. Abdullah, A.R. Mohamed, Sunlight responsive WO3/ZnO nanosheets for photocatalytic degradation and mineralization of chlorinated phenoxyacetic acid herbicides in water. J. Colloid Interface. Sci 450, 34–44 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Hosseini, E. Eftekhari, S.M. Soltani, F.E. Babadi, L.J. Minggu, M.H.S. Ismail, Synthesis, characterization and performance evaluation of three-layered photoanodes by introducing a blend of WO3 and Fe2O3 for dye degradation. Appl. Surf. Sci 289, 53–61 (2014)CrossRefGoogle Scholar
  8. 8.
    E.K. Heidari, E. Marzbanrad, C. Zamani, B. Raissi, Nanocasting synthesis of ultrafine WO3 nanoparticles for gas sensing applications. Nanoscale Res. Lett 5, 370–373 (2010)CrossRefGoogle Scholar
  9. 9.
    C.A. Bignozzi, S. Caramori, V. Cristino, R. Argazzi, L. Meda, A. Tacca, Nanostructured photoelectrodes based on WO3: applications to photo oxidation of aqueous electrolytes. Chem. Soc. Rev 42, 2228 (2013)CrossRefGoogle Scholar
  10. 10.
    S. Aravinth, B. Sankar, S.R. Chakravarthi, R. Sarathi, Generation and characterization of nano tungsten oxide particles by wire explosion process. Mater. Charact 62, 248–255 (2011)CrossRefGoogle Scholar
  11. 11.
    Q.Y. Zeng, J.H. Li, J. Bai, X.J. Li, L.G. Xia, B.X. Zhou, Preparation of vertically aligned WO3 nanoplate array films based on peroxotungstate reduction reaction and their excellent photoelectrocatalytic performance. Appl. Catal. B Environ 202, 388–396 (2017)CrossRefGoogle Scholar
  12. 12.
    N.A.R. Delgado, L.H. Reyes, I.L.G. Mar, M.A.G. Pinilla, A.H. Ramírez, Synthesis by sol-gel of WO3/TiO2 for solar photocatalytic degradation of malathion pesticide., Catal. Today. 209, 35–40 (2013)Google Scholar
  13. 13.
    A. Mao, J.K. Kim, K. Shin, D.H. Wang, P.J. Yoo, G.Y. Han, J.H. Park, Hematite modified tungsten trioxide nanoparticle photoanode for solar water oxidation. J. Power Sources 210, 32–37 (2012)CrossRefGoogle Scholar
  14. 14.
    S. Hosseini, E. Eftekhari, S.M. Soltani, F.E. Babadi, L.J. Minggu, M.H. Shah Ismail, Synthesis, characterization and performance evaluation of three-layered photoanodes by introducing a blend of WO3 and Fe2O3 for dye degradation. Appl. Surf. Sci 289, 53–61 (2014)CrossRefGoogle Scholar
  15. 15.
    P.V. Tong, N.D. Hoa, N.V. Duy, D.T.T. Le, N.V. Hieu, Enhancement of gas-sensing characteristics of hydrothermally synthesized WO3 nanosheets by surface decoration with Pd nanoparticles. Sens. Actuat. B Chem 223, 453–460 (2016)CrossRefGoogle Scholar
  16. 16.
    N. Siedl, S.O. Baumann, M.J. Elser, O. Diwald, Particle networks from powder mixtures: generation of TiO2-SnO2 heterojunctions via surface charge-induced heteroaggregation. J. Phys. Chem. C 116, 22967–22973 (2012)CrossRefGoogle Scholar
  17. 17.
    S.H. Shen, C.X. Kronawitter, J.H. Jiang, S.S. Mao, L.J. Guo, Surface tuning for promoted charge transfer in hematite nanosheet arrays as water-splitting photoanodes. Nano Res. 5, 327–336 (2012)CrossRefGoogle Scholar
  18. 18.
    G.Y. Zhang, Y. Feng, Y.Y. Xu, D.Z. Gao, Y.Q. Sun, Controlled synthesis of mesoporous a-Fe2 O3 nanosheets and visible light photocatalytic property. Mater. Res. Bull 47, 625–630 (2012)CrossRefGoogle Scholar
  19. 19.
    N.A.R. Delgado, M.A.G. Pinilla, L.M. Treviño, L.H. Reyes, J.L.G. Mar, A.H. Ramírez, Solar photocatalytic activity of TiO2 modified with WO3 on the degradation of an organophosphorus pesticide. J. Hazard. Mater 263, 36–44 (2013)CrossRefGoogle Scholar
  20. 20.
    C.W. Lai, S. Sreekantan, Preparation of hybrid WO3-TiO2 nanotube photoelectrodes using anodization and wet impregnation: improved water-splitting hydrogen generation performance. Int. J. Hydrog. Energy 5, 2156–2166 (2013)CrossRefGoogle Scholar
  21. 21.
    T. Stoycheva, F.E. Annanouch, I. Gràcia, E. Llobet, C. Blackman, X. Correig, S. Vallejos, Micromachined gas sensors based on tungsten oxide nanoneedles directly integrated via aerosol assisted CVD. Sens. Actuat. B Chem 198, 210–218 (2014)CrossRefGoogle Scholar
  22. 22.
    Z.L. Xu, I. Tabata, K. Hirogaki, K. Hisada, T. Wang, S. Wang, T. Hori, Preparation of platinum-loaded cubic tungsten oxide: a highly efficient visible light-driven photocatalyst. Mater. Lett 65, 1252–1256 (2011)CrossRefGoogle Scholar
  23. 23.
    M.H.S. Abhudhahir, J. Kandasamy, Synthesis and characterization of manganese doped tungsten oxide by microwave irradiation method. J. Mater. Sci. Semicond. Process 40, 695–700 (2015)CrossRefGoogle Scholar
  24. 24.
    M.M. Rashad, A.E. Shalan, Hydrothermal synthesis of hierarchical WO3 nanostructures for dye-sensitized solar cells. Appl. Phys A 116, 781–788 (2014)CrossRefGoogle Scholar
  25. 25.
    S.M. Harshulkhan, K. Janaki, G. Velraj, R.S. Ganapathy, S. Krishnaraj, Structural and optical properties of Ag doped tungsten oxide (WO3) by microwave-assisted chemical route. J. Mater. Sci: Mater. Electron 27, 3158–3163 (2016)Google Scholar
  26. 26.
    S.A.K. Leghari, S. Sajjad, F. Chen, J.L. Zhang, WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst. Chem. Eng. J 166, 906–915 (2011)CrossRefGoogle Scholar
  27. 27.
    Y.C. Her, C.C. Changa, Facile synthesis of one-dimensional crystalline/ amorphous tungsten oxide core/shell heterostructures with balanced electrochromic properties. CrystEngComm 16, 5379–5386 (2014)CrossRefGoogle Scholar
  28. 28.
    D. Barreca, G. Carraro, A. Gasparotto, C. Maccato, C. Sada, E. Bontempi, M. Brisotto, O. Pliekhova, U.L. Stangar, Novel two-step vapor-phase synthesis of UV–Vis light active Fe2O3/WO3 nanocomposites for phenol degradation. Environ. Sci. Pollut. R 23, 20350–20359 (2016)CrossRefGoogle Scholar
  29. 29.
    S.S. Shendage, V.L. Patil, S.A. Vanalakar, S.P. Patil, N.S. Harale, J.L. Bhosale, J.H. Kim, P.S. Patil, Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens. Actuat. B Chem 240, 426–433 (2017)CrossRefGoogle Scholar
  30. 30.
    D. Pradhan, K.T. Leung, Controlled growth of two-dimensional and one- dimensional ZnO nanostructures on indium oxide coated glass by direct electrodeposition. Langmuir 24, 9707–9716 (2008)CrossRefGoogle Scholar
  31. 31.
    A.K.L. Sajjad, S. Shamaila, B.Z. Tian, F. Chen, J.L. Zhang, Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst. J. Hazard. Mater 177, 781–791 (2010)CrossRefGoogle Scholar
  32. 32.
    H. Kim, H. Kim, S. Weon, G. Moon, J.H. Kim, W. Choi, Robust Co-catalytic performance of nanodiamonds loaded on WO3 for the decomposition of volatile organic compounds under visible light. ACS Catal 6, 8350–8360 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Rui Lei
    • 1
  • Hongwei Ni
    • 1
  • Rongsheng Chen
    • 1
  • Bowei Zhang
    • 1
  • Weiting Zhan
    • 1
  • Yang Li
    • 1
  1. 1.The State Key Laboratory of Refractories and Metallurgy, School of Materials and MetallurgyWuhan University of Science and TechnologyWuhanChina

Personalised recommendations