Advertisement

Relaxor dielectric behavior in BaTiO3 substituted BiFeO3–PbTiO3 multiferroic system

  • Naveen Kumar
  • Narayan Bastola
  • Sanjeev Kumar
  • Rajeev Ranjan
Article
  • 212 Downloads

Abstract

(0.9 − x)BiFeO3–xPbTiO3–0.1BaTiO3 for 0.20 ≤ x ≤ 0.24 ceramic sample was prepared by conventional solid state reaction method. X-ray diffraction analysis confirmed the existence of morphotropic phase boundary (MPB) between monoclinic (Cc) and tetragonal (P4mm) phases. Dielectric measurements revealed the diffusive and dispersive relaxor-like behavior for all the composition in the vicinity of MPB. A broad dielectric maximum was observed in temperature dependent real part of dielectric permittivity for all the compositions. The relaxor-like character was quantified by using Vogel–Fulcher relationship, which yielded activation energy of 0.190–0.225 eV, characteristic frequency of the order of 1012 Hz and freezing temperature ranging 189.0–200.5 °C. The low remnant polarization and high coercive field suggests that the polarization in nanodomains is weakly coupled, which limits the long range ordering of dipoles and alters the system from normal ferroelectric to relaxor ferroelectric. The high value of tetragonal strain (c/a ~ 1.16) results in a weak piezoelectric response for all the ceramic compositions.

Keywords

BaTiO3 Dielectric Permittivity BiFeO3 Morphotropic Phase Boundary Piezoelectric Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Sanjeev Kumar is thankful to PEC University of Technology, Chandigarh for providing financial assistance in the form of RIPA project. Naveen Kumar is thankful to PEC University of Technology for proving scholarship. He is also thankful to NRC-M (Materials Engineering, IISc, Bengaluru) for carrying out characterization work.

References

  1. 1.
    E.L. Cross, Ferroelectrics 151, 305 (1994)CrossRefGoogle Scholar
  2. 2.
    S. Park, T.R. Shrout, J. Appl. Phys. 82, 1804 (1997)CrossRefGoogle Scholar
  3. 3.
    J. Kuwata, K. Uchino, S. Nomura, Jpn. J. Appl. Phys. 121, 1298 (1982)CrossRefGoogle Scholar
  4. 4.
    G. Xu, H. Luo, Y. Guo, Y. Gao, H. Xu, Z. Qi, W. Zhong, Z. Yin, Solid State Commun. 120, 321 (2001)CrossRefGoogle Scholar
  5. 5.
    A.G. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.S. Popov, Phys. Solid State 2, 2584 (1961)Google Scholar
  6. 6.
    E.L. Cross, Ferroelectrics 76, 241 (1987)CrossRefGoogle Scholar
  7. 7.
    S.M. Choi, C.J. Stringer, T.R. Shrout, C.A. Randa, J. Appl. Phys. 98, 034108 (2005)CrossRefGoogle Scholar
  8. 8.
    S. Bhattacharjee, D. Pandey, J. Appl. Phys. 107, 124112 (2010)CrossRefGoogle Scholar
  9. 9.
    C.A. Randall, R. Eitel, B. Jones, T.R. Shrout, D.I. Woodward, I.M. Reaney, J. Appl. Phys. 95, 3633 (2004)CrossRefGoogle Scholar
  10. 10.
    C.J. Stringer, T.R. Shrout, C.A. Randall, I.M. Reaney, J. Appl. Phys. 99, 024106 (2006)CrossRefGoogle Scholar
  11. 11.
    J. Chen, P. Hu, X. Sun, C. Sun, X. Xing, Appl. Phys. Lett. 91, 171907 (2007)CrossRefGoogle Scholar
  12. 12.
    J. Chen, K. Nittala, J.S. Forrester, J.L. Jones, J. Deng, R. Yu, X. Xing, J. Am. Chem. Soc. 133, 11114 (2011)CrossRefGoogle Scholar
  13. 13.
    I. Grinberg, M.R. Suchomel, P.K. Davies, A.M. Rappe, J. Appl. Phys. 98, 094111 (2005)CrossRefGoogle Scholar
  14. 14.
    M. Yashima, K. Omoto, J. Chen, H. Kato, X. Xing, Chem. Mater. 23, 3135 (2011)CrossRefGoogle Scholar
  15. 15.
    H. Bea, B. Dupe, S. Fusil, R. Mattana, E. Jacquet, B. Warot-Fonrose, F. Wilhelm, A. Rogalev, S. Petit, V. Cros, A. Anane, F. Petroff, K. Bouzehouane, G. Geneste, B. Dkhil, S. Lisenkov, I. Ponomareva, L. Bellaiche, M. Bibes, A. Barthelemy, Phys. Rev. Lett. 102, 217603 (2009)CrossRefGoogle Scholar
  16. 16.
    J. Cheng, Z. Meng, L.E. Cross, J. Appl. Phys. 96, 6611 (2004)CrossRefGoogle Scholar
  17. 17.
    J. Chen, X.R. Xing, G.R. Liu, Appl. Phys. Lett. 89, 101914 (2006)CrossRefGoogle Scholar
  18. 18.
    V.S. Sunder, A. Halliyal, A. M. Umarji, J. Mater. Res. 10, 1301 (1995)CrossRefGoogle Scholar
  19. 19.
    W. Hu, X.L. Tan, K. Rajan, J. Am. Ceram. Soc. 94, 4358 (2011)CrossRefGoogle Scholar
  20. 20.
    L.L. Fan, J. Chen, S. Li, H.J. Kang, L.J. Liu, L. Fang, X.R. Xing, Appl. Phys. Lett. 102, 022905 (2013)CrossRefGoogle Scholar
  21. 21.
    H. Ogihara, C.A. Randall, S. Trolier-McKinstry. J. Am. Ceram. Soc. 92, 110 (2009)CrossRefGoogle Scholar
  22. 22.
    C.C. Huang, D.P. Cann, J. Appl. Phys 104, 024117 (2008)CrossRefGoogle Scholar
  23. 23.
    I. Fujii, K. Nakashima, N. Kumada, S. Wada, J. Ceram. Soc. Jpn. 120, 30 (2012)CrossRefGoogle Scholar
  24. 24.
    A.K. Kalyani, R. Garg, R. Ranjan, Appl. Phys. Lett. 94, 202903 (2009)CrossRefGoogle Scholar
  25. 25.
    H. Ning, Y. Lin, X. Hou, L. Zhang, J. Mater. Sci. Mater. Electron. 25, 1162 (2014)CrossRefGoogle Scholar
  26. 26.
    S. Bhattacharjee, D. Pandey, J. Appl. Phys. 107, 124112 (2010)CrossRefGoogle Scholar
  27. 27.
    S. Bhattacharjee, V. Pandey, R.K. Kotnala, D. Pandey, Appl. Phys. Lett. 94, 012906 (2009)CrossRefGoogle Scholar
  28. 28.
    B. Noheda, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross, S.E. Park, Appl. Phys. Lett. 74, 2059 (1999)CrossRefGoogle Scholar
  29. 29.
    Y.M. Jin, Y.U. Wang, A.G. Khachaturyan, J.F. Li, D. Viehland, Phys. Rev. Lett. 91, 197601 (2003)CrossRefGoogle Scholar
  30. 30.
    A.K. Himanshua, D.C. Guptab, A. Duttac, T. P. Sinhac, S.K. Bandyopadhayay, Indian J. Pure Appl. Phys. 47, 212–219 (2009)Google Scholar
  31. 31.
    R. Ranjan, K.A. Raju, Phys. Rev. B 82, 054119 (2010)CrossRefGoogle Scholar
  32. 32.
    O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B 49, 12 (1994)CrossRefGoogle Scholar
  33. 33.
    R. Cohen, Nature 358, 136 (1992)CrossRefGoogle Scholar
  34. 34.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)CrossRefGoogle Scholar
  35. 35.
    S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)CrossRefGoogle Scholar
  36. 36.
    R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21 (2007)CrossRefGoogle Scholar
  37. 37.
    I. Levin, V. Krayzman, M.G. Tucker, G.C. Woicik, Appl. Phys. Lett. 104, 242913 (2014)CrossRefGoogle Scholar
  38. 38.
    T. Leist, T. Granzow, W. Jo, J. Rodel, J. Appl. Phys. 108, 014103 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Naveen Kumar
    • 1
  • Narayan Bastola
    • 2
  • Sanjeev Kumar
    • 1
  • Rajeev Ranjan
    • 2
  1. 1.Department of Applied SciencesPEC University of TechnologyChandigarhIndia
  2. 2.Department of Materials EngineeringIndian Institute of ScienceBengaluruIndia

Personalised recommendations