Charge correlation of ferroelectric and piezoelectric properties of (1 − x)(Na0.5Bi0.5)TiO3xBaTiO3 lead-free ceramic solid solution

  • S. Sasikumar
  • R. Saravanan
  • S. Saravanakumar
  • K. Aravinth


Single phased lead-free (1 − x)(Na0.5Bi0.5)TiO3xBaTiO3 (x = 0.00, 0.04, 0.08 and 0.12) ((1 − x)NBT–xBT) ceramics were synthesized by the solid-state reaction method. The powder X-ray diffraction patterns and profile refinements revealed that, for 0.04 < x < 0.08, the prepared ceramics have been crystallized in morphotropic phase boundary between rhombohedral to tetragonal structures. The charge distribution and bonding behaviour in (1 − x)NBT–xBT unit cell were completely analyzed through charge density distribution studies. UV–visible analysis reveals that, the optical band gap energy of the solid solution increases with addition of BaTiO3 content. The surface morphology and elemental compositions for the sintered powders were analyzed through scanning electron microscopy and energy dispersive X-ray studies. Electrical measurements on the solid solutions showed that the maximum values of the dielectric constant, the remnant polarization and the piezoelectric coefficient are reached at near (x = 0.08) the morphotropic phase boundary (ε = 4070 at 100 kHz; P r = 18.92 µC/cm2; d 33  = 122 pC/N). Thus, the (1 − x)NBT–xBT system is expected to be a promising candidate for lead-free piezoelectric material.


BaTiO3 Piezoelectric Property Morphotropic Phase Boundary Maximum Entropy Method Charge Density Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors S. Sasikumar and R. Saravanan are thankful to Naval Research Board of DRDO for providing Grant in research project (No. NRB/DRDO/MAT/269). The authors S. Sasikumar and R. Saravanan would like to express their special thanks Dr. T. Mukundan, Material Science Division and Dr. R. Ramesh, Transducers division, NPOL, Cochin. The authors acknowledge the MHRD, Government of India for the multiferroic tester facility under the plan fund sanctioned to the Department of Physics, NIT, Tiruchirappalli. Also, the authors thank to SAIF (Sophisticated Analytical Instrument Facility), CUSAT, Cochin for the PXRD measurements. The authorities of The Madura College, Madurai – 625 011, Tamil Nadu, India are gratefully acknowledged for their constant encouragement of the research activities of the authors.


  1. 1.
    J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009)CrossRefGoogle Scholar
  2. 2.
    J. Shi, H. Fan, X. Liu, Y. Ma, Q. Li, J. Alloy. Compd. 627, 463 (2015)CrossRefGoogle Scholar
  3. 3.
    Q. Xu, T. Li, H. Hao, S. Zhang, Z. Wang, M. Cao, Z. Yao, H. Liu, J. Eur. Ceram. Soc. 35, 545 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Zhao, H. Fan, G. Dong, Z. Liu, Mater. Lett. 174, 242 (2016)CrossRefGoogle Scholar
  5. 5.
    Z. Liu, H. Fan, S. Lei, J. Wang, H. Tian, Appl. Phys. A 122(10), 900 (2016)CrossRefGoogle Scholar
  6. 6.
    G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, Sov. Phys. Solid State (Engl. Transl.) 2, 2651 (1961)Google Scholar
  7. 7.
    X.-C. Zheng, G.-P. Zheng, Z. Lin, Z.-Y. Jiang, Ceram. Int. 39, 1233 (2013)CrossRefGoogle Scholar
  8. 8.
    J.H. Cho, Y.H. Jeong, J.H. Nam, J.S. Yun, Y. J. Park, Ceram. Int. 40, 8419 (2014)CrossRefGoogle Scholar
  9. 9.
    G. Dong, H. Fan, J. Shi, M. Li, J. Am. Ceram. Soc. 98(4), 1150 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Acosta, W. Jo, J. Rodel, J. Am. Ceram. Soc. 97(6), 1937 (2014)CrossRefGoogle Scholar
  11. 11.
    T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30(9B), 2236 (1991)CrossRefGoogle Scholar
  12. 12.
    T. Takenaka, T. Okuda, K. Takegahara, Ferroelectrics 196, 175 (1997)Google Scholar
  13. 13.
    B.J. Chu, D.R. Chen, G.R. Li, Q.R. Yin, J. Eur. Ceram. Soc. 22, 2115 (2002)CrossRefGoogle Scholar
  14. 14.
    O. Elkechai, M. Manier, J.P. Mercurio, Phys. Status Solid (a). 157, 499 (1996)CrossRefGoogle Scholar
  15. 15.
    E.V. Ramana, B.V. Saradhi, S.V. Suryanarayana, T. Bhimasankaram, Ferroelectrics 324, 55 (2005)CrossRefGoogle Scholar
  16. 16.
    R.E. Cohen, J. Phys. Chem. Solid 61, 139 (2000)CrossRefGoogle Scholar
  17. 17.
    D.M. Collins, Nature 49, 298 (1982)Google Scholar
  18. 18.
    Y. Qu, D. Shan, J. Song, Mater. Sci. Eng. B121, 148 (2005)CrossRefGoogle Scholar
  19. 19.
    V.M. Goldschmidt, Naturwissenschaften 14, 477 (1926)CrossRefGoogle Scholar
  20. 20.
    H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)CrossRefGoogle Scholar
  21. 21.
    V. Petricek, M. Dusek, Palatinus, Jana, the crystallographic computing system (Institute of Physics), Praha, Czech Republic (2006)Google Scholar
  22. 22.
    D.L. Wood, J. Tauc, Phys. Rev. B5, 3144 (1972)CrossRefGoogle Scholar
  23. 23.
    S. Chattopadhyay, S. Dutta, A. Banerjee, D. Jana, S. Bandyopadhyay, S. Chattopadhyay, A. Sarkar, Phys. B 404, 1509 (2009)CrossRefGoogle Scholar
  24. 24.
    S. Sridevi, K. Subrat Kumar, K. Pawan, Ceram. Int. 41(9), 10710 (2015)CrossRefGoogle Scholar
  25. 25.
    K. Bhattacharya, G. Ravichandran, Acta Mater. 51, 5941 (2003)CrossRefGoogle Scholar
  26. 26.
    C. Xu, D. Lin, K.W. Kwok, Solid State Sci. 10, 934 (2008)CrossRefGoogle Scholar
  27. 27.
    K. Momma, F. Izumi, Comm. Crystallogr. Comput. IUCr Newslett. 7, 106 (2006)Google Scholar
  28. 28.
    S. Tripathy, K. Mishra, S. Sen and D. Pradhan, J. Am. Ceram. Soc. 97(6), 1846 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • S. Sasikumar
    • 1
  • R. Saravanan
    • 1
  • S. Saravanakumar
    • 2
  • K. Aravinth
    • 3
  1. 1.Research Centre and Post Graduate Department of PhysicsThe Madura CollegeMaduraiIndia
  2. 2.Department of PhysicsKalasalingam UniversityViruthunagarIndia
  3. 3.SSN Research CenterSSN College of EngineeringKalavakkamIndia

Personalised recommendations