Hydrothermal synthesis and characterization of lead oxide nanocrystal in presence of tetradentate Schiff-base and degradation investigation of organic pollutant in waste water

  • Laya Nejati-Moghadam
  • Sousan Gholamrezaei
  • Masoud Salavati-Niasari
  • Azade Esmaeili-Bafghi-Karimabad


Nowadays, lead oxide is one of the most important materials that have a lot of electrochemical and industrial applications such as oxidation of organic compounds in waste water, oxidation of phenol, Cr3+, and glucose, evolution of ozone, and as an electrocatalyst for salicylic acid. In this work, lead oxide nanocrystals were prepared by hydrothermal method in mild condition and the effect of various kinds of capping agent was investigated to achieve lower than 10 nm nanoparticle. Photocatalytic property of these nanoparticles in different dyes degradation under UV light was investigated. Nanoparticles were characterized by using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared techniques X-ray energy dispersive spectroscopy and Ultraviolet spectroscopy (UV–Vis).


PbO2 Lead Oxide Lead Dioxide Salophen PbO2 Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors are grateful to the council of Iran National Science Foundation (INSF) and University of Kashan for supporting this work by Grant No. (159271/529).


  1. 1.
    K. Kannan, G. Muthuraman, S. Moon, Controlled synthesis of highly spherical nano-PbO2 particles and their characterization. Mater. Lett. 123, 19–22 (2014)CrossRefGoogle Scholar
  2. 2.
    X. Yang, R. Zou, F. Huo, D. Cai, D. Xiao, Preparation and characterization of Ti/SnO2–Sb2O3–Nb2O5/PbO2 thin film as electrode material for the degradation of phenol. J. Hazard. Mater. 164, 367–373 (2009)CrossRefGoogle Scholar
  3. 3.
    D. Devilliers, M. Dinh Thi, E. Mahe, Q. Le Xuan, Cr(III) oxidation with lead dioxide-based anodes. Electrochim. Acta 48, 4301 (2003)CrossRefGoogle Scholar
  4. 4.
    T.V. Kasumov, Synthesis, spectroscopic characterization and ESR studies on electron transfer reactions of bis[N-(2,6-di-tert-butyl-1-hydroxyphenyl)salicylaldiminato]-copper(II) complexes with PbO2 and PPh3. Spectrochimica Acta Part A 57, 1649–1662 (2001)CrossRefGoogle Scholar
  5. 5.
    P. Gao, Y. Liu, X. Bu, M. Hu, Y. Dai, X. Gao, L. Lei, A non-conventional fluorinated separator in high-voltage graphite/LiNi0.4Mn1.6O4 cells. J. Power Source 242, 299–304 (2013)CrossRefGoogle Scholar
  6. 6.
    A. Al-Saie, A. Jaafar, M. Bououdina, Structure and magnetic properties of mechanically milled Pb3O4–Fe2O3 mixture. Int. J. Nanoparticles 4, 20–26 (2011)CrossRefGoogle Scholar
  7. 7.
    L.X. Ding, F.L. Zheng, J.W. Wang, G.R. Li, Z.L. Wang, Y.X. Tong, Selected-contr Super-large dendrites composed of trigonal PbO2 nanoplates with enhanced performances for electrochemical devices, synthesis of PbO2 submicrometer-sized hollow spheres and Pb3O4 microtubes. Chem. Commun. 48, 1275–1277 (2012)CrossRefGoogle Scholar
  8. 8.
    G. Xi, Y. Peng, L. Xu, M. Zhang, W. Yu, Y. Qia, Selected-control synthesis of PbO2 submicrometer-sized hollow spheres and Pb3O4 microtubes. Inorg. Chem. Commun. 7, 607–610 (2004)CrossRefGoogle Scholar
  9. 9.
    M. Bervas, M. Perrin, S. Genies, F. Mattera, Low-cost synthesis and utilization in mini-tubular electrodes of nano PbO2. J. Power Source 173, 570–577 (2007)CrossRefGoogle Scholar
  10. 10.
    T.I. Dyuzheva, L.M. Lityagina, N.A. Bendeliani, Hydrothermal crystal growth of the high-pressure phases of α-PbO2 and TiO2. J. Alloy Compd. 377, 17–20 (2004)CrossRefGoogle Scholar
  11. 11.
    N. Fan, C. Sun, D. Kong, Y. Qian, Chemical synthesis of PbO2 particles with multiple morphologies and phases and their electrochemical performance as the positive active material. J. Power Source 254, 323–328 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Ghasemi, M.F. Mousavi, M. Shamsipur, H. Karami, Sonochemical-assisted synthesis of nano-structured lead dioxide. Ultrason. Sonochem. 15, 448–455 (2008)CrossRefGoogle Scholar
  13. 13.
    F.K. Butt, C. Cao, W.S. Khan, Z. Ali, T. Mahmood, R. Ahmed, S. Hussain, G. Nabi, Fabrication of novel SnO2 nanofibers bundle and their optical properties. Mater. Chem. Phys. 136, 10–14 (2012)CrossRefGoogle Scholar
  14. 14.
    G. Xi, Y. Peng, Li.. Xu, M. Zhang, W. Yu, Y. Qian, Selected-control synthesis of PbO2 submicrometer-sized hollow spheres and Pb3O4 microtubes. Inorg. Chem. Commun. 7, 607–610 (2004)CrossRefGoogle Scholar
  15. 15.
    M. Salavati-Niasari, B. Shoshtari-Yeganeh, F. Mohandes, Schiff-base assisted synthesis of lead selenide nanostructures. Mater. Res. Bull. 48, 1745–1752 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Gholamrezaei, M. Salavati-Niasari, M. Bazarganipour, M. Panahi-Kalamaoui S. Bagheri, Novel precursors for synthesis of dendrite-like PbTe nanostructures and investigation of photoluminescence behavior. Adv. Powder. Technol. 25, 1585–1592 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Gholamrezaei, M. Salavati-Niasari, D. Ghanbari, A facile hydrothermal method for synthesis different morphologies of PbTe nanostructures. J. Ind. Eng. Chem. 20, 3335–3351 (2014)CrossRefGoogle Scholar
  18. 18.
    S. Gholamrezaei, M. Salavati-Niasari, D. Ghanbari, Synthesis and application of lead telluride nanoparticles for degradation of organic pollution. J. Ind. Eng. Chem. 20, 4000–4007 (2014)CrossRefGoogle Scholar
  19. 19.
    B. Han, W. Zhao, X. Qin, Y.G. Li, Y. Sun, W. Wei, Synthesis of dimethyl hexane-1,6-diyldicarbamate from 1,6-hexamethylenediamine and methyl carbamate using lead dioxide as catalyst. Catal. Commun 33, 38–41 (2013)CrossRefGoogle Scholar
  20. 20.
    X. Duan, F. Mab, Z. Yuan, L. Chang, X. Jin, Electrochemical degradation of phenol in aqueous solution using PbO2 anode. J. Taiwan Inst. Chem. Eng. 44, 95–102 (2013)CrossRefGoogle Scholar
  21. 21.
    L. Nejati-Moghadam, D. Ghanbari, M. Salavati-Niasari, A. Esmaeili-Bafghi-Karimabad, S. Gholamrezaei, Photo-degradation of organic dyes: simple chemical synthesis of various morphologies of tin dioxide semiconductor and its nanocomposite, J. Mater. Sci. 26, 6386–6394 (2015)Google Scholar
  22. 22.
    M. Goudarzi, D. Ghanbari, M. Salavati-Niasari, Room temperature preparation of aluminum hydroxide nanoparticles and flame retardant poly vinyl alcohol nanocomposite. J. Nanostruct. 5, 105–110 (2015)Google Scholar
  23. 23.
    A. Esmaeili-Bafghi-Karimabad, D. Ghanbari, M. Salavati-Niasari, H. Safardoust-Hojaghan, Microwave-assisted synthesis of SiO2 nanoparticles and its application on the flame retardancy of poly styrene and poly carbonate nanocomposites. J. Nanostruct. 5, 263–269 (2015)Google Scholar
  24. 24.
    S. Moshtaghi, M. Salavati-Niasari, D. Ghanbari, Characterization of CaSn(OH)6 and CaSnO3 nanostructures synthesized by a new precursor. J. Nanostruct. 5, 169–174 (2015)CrossRefGoogle Scholar
  25. 25.
    F. Beshkar, M. Salavati-Niasari, Facile synthesis of Nickel Chromite nanostructures by hydrothermal route for photocatalytic degradation of acid black 1 under visible light. J. Nanostruct. 5, 17–23 (2015)CrossRefGoogle Scholar
  26. 26.
    M. Mousavi-Kamazani, M. Salavati-Niasari, D. Ghanbari, A facile solvothermal method for synthesis of CuInS2 nanostructures. J. Nanostruct. 2, 363–368 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Laya Nejati-Moghadam
    • 1
  • Sousan Gholamrezaei
    • 2
  • Masoud Salavati-Niasari
    • 1
  • Azade Esmaeili-Bafghi-Karimabad
    • 1
  1. 1.Institute of Nano Science and Nano TechnologyUniversity of KashanKashanIslamic Republic of Iran
  2. 2.Young Researchers Club, Arak BranchIslamic Azad UniversityArakIran

Personalised recommendations