Synthesis of RGO–Co doped ZnO/PANI hybrid composite for supercapacitor application

  • R. Karthik
  • S. Thambidurai


In this paper, reduced graphene oxide–cobalt doped ZnO/polyaniline (RGO–CZO/PANI) hybrid composites were synthesized through the two step approach: Cobalt doped ZnO particles on RGO sheets by a simple chemical co-precipitation method, followed by coating with PANI through in situ polymerization method. Morphological and structural properties were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Ultraviolet–Visible absorption spectra, scanning electron microscopy and transmission electron microscopy. Electrochemical performance of the RGO–CZO/PANI hybrid composites were carried out by cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy in 1M H2SO4 electrolyte medium. The findings show that the charge storage of RGO–CZO/PANI hybrid composite is mainly due to the pseudocapacitance (reversible redox reaction) behavior. The highest specific capacitance of 515 F g−1 with the energy density of 370 Wh kg−1 and power density of 3.1 kW kg−1 could be achieved (For three electrode system) in the potential region between −0.2 and 1.0. Notably, in a two-electrode system, the specific capacitance, energy density and power density of the RGO–CZO/PANI symmetric supercapacitor was obtained to be 208 F g−1, 28.88 Wh kg−1 and 0.694 kW kg−1, respectively. The results manifest that the synthesized RGO–CZO/PANI hybrid composite is the promising electrode material for supercapacitor applications.


Graphene Oxide PANI Specific Capacitance Co2O3 Electrochemical Impedance Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the University Grants Commission, New Delhi, India, for providing financial assistance from UGC-BSR Fellowship. The author greatly acknowledged the Department of Physics, Alagappa University, Karaikudi for providing XRD (DST-FIST) facilities and Department of Industrial Chemistry, Alagappa University, Karaikudi for providing HR-SEM analysis. I gratefully acknowledge V.Maruthapandian and S.Sathyamoorthi, Research scholars, Central Electrochemical Research Institute, Karaikidi, India for their valuable suggestions during this part of my research work.


  1. 1.
    F. Chen, P. Liu, Q. Zhao, Electrochim. Acta 76, 62–68 (2012)CrossRefGoogle Scholar
  2. 2.
    H. Javadian, F.Z. Sorkhrodi, B.B. Koutenaei, J. Ind. Eng. Chem. 20, 3678–3688 (2014)CrossRefGoogle Scholar
  3. 3.
    H.W. Wang, Z.A. Hu, Y.Q. Chang, Y.L. Chen, Z.Y. Zhang, Y.Y. Yang, H.Y. Wu, Mater. Chem. Phys. 130, 672–679 (2011)CrossRefGoogle Scholar
  4. 4.
    A. Jamil, H.N. Lim, N.A. Yusof, A.A. Tajudin, N.M. Huang, A. Pandikumar, A. Moradi Golsheikh, Y.H. Lee, Y. Andou, Sens. Actuators B 221, 1423–1432 (2015)CrossRefGoogle Scholar
  5. 5.
    C.C. Yeh, D.H. Chen, Appl. Catal. B Environ. 150, 298–304 (2014)CrossRefGoogle Scholar
  6. 6.
    A. Prakash, D. Bahadur, ACS Appl. Mater. Interfaces 6, 1394–1405 (2014)CrossRefGoogle Scholar
  7. 7.
    D.P. Norton, Y.W. Heo, M.P. Ivill, K. Ip, S.J. Pearton, M.F. Chisholm, T. Steiner, Mater. Today 7, 34–40 (2004)CrossRefGoogle Scholar
  8. 8.
    M. Norouzi, M. Kolahdouz, P. Ebrahimi, M. Ganjian, R. Soleimanzadeh, K. Narimani, H. Radamson, Thin Solid Films 619, 41–47 (2016)CrossRefGoogle Scholar
  9. 9.
    X.H. Xia, J.P. Tu, X.L. Wang, C.D. Gu, X.B. Zhao, Chem. Commun. 47, 5786–5788 (2011)CrossRefGoogle Scholar
  10. 10.
    Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H.J. Dai, Nat. Mater. 10, 780–786 (2011)CrossRefGoogle Scholar
  11. 11.
    C. Kuang, C. Lin, Y. Lai, R. Vittal, K.C. Ho, Biosens. Bioelectron. 27, 125–131 (2011)CrossRefGoogle Scholar
  12. 12.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 496–499 (2000)CrossRefGoogle Scholar
  13. 13.
    J.W. Xiao, S.H. Yang, J. Mater. Chem. 22, 12253–12262 (2012)CrossRefGoogle Scholar
  14. 14.
    W.H. Nam, B.B. Kim, S.G. Seo, Y.S. Lim, J.Y. Kim, W.S. Seo, W.K. Choi, H.H. Park, J.Y. Lee, Nano Lett. 14, 5104–5109 (2014)CrossRefGoogle Scholar
  15. 15.
    M.A. Garakani, S. Abouali, B. Zhang, C.A. Takagi, Z.L. Xu, J. Huang, J. Huang, J.K. Kim, ACS Appl. Mater. Interfaces 6, 18971–18980 (2014)CrossRefGoogle Scholar
  16. 16.
    N. Karak, B. Pal, D. Sarkar, T.K. Kundu, J. Alloys Compd. 647, 252–258 (2015)CrossRefGoogle Scholar
  17. 17.
    L. Li, G. Ruan, Z. Peng, Y. Yang, H. Fei, A. Rahman O. Raji, E.L.G. Samuel, M. J., Tour. ACS Appl. Mater. Interfaces 6, 15033–15039 (2014)Google Scholar
  18. 18.
    T.T. Nguyen, V.H. Nguyen, R.K. Deivasigamani, D. Kharismadewi, Y. Iwai, J.J. Shim, Solid state sci. 53, 71–77 (2016)CrossRefGoogle Scholar
  19. 19.
    N. Parvatikar, S. Jain, C.M. Kanamadi, B.K. Chougule, S.V. Bhoraskar, M.V.N. Ambika Prasad, J. Appl. Polym. Sci. 103, 653–658 (2007)CrossRefGoogle Scholar
  20. 20.
    V.H. Nguyena, J.J. Shim, Synth. Metals 207, 110–115 (2015)CrossRefGoogle Scholar
  21. 21.
    S. Radhakrishnan, K. Krishnamoorthy, C. Sekar, J. Wilson, S.J. Kim, Chem. Eng. J. 259, 594–602 (2015)CrossRefGoogle Scholar
  22. 22.
    H. Su, T. Wang, S. Zhang, J. Song, C. Mao, H. Niu, B. Jin, J. Wu, Y. Tian, Solid State Sci. 14, 677–681 (2012)CrossRefGoogle Scholar
  23. 23.
    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  24. 24.
    F. Akbar, M. Kolahdouz, Sh.. Larimian, B. Radfar, H.H. Radamson, J. Mater. Sci. 26, 4347–4379 (2015)Google Scholar
  25. 25.
    F. Du, W. Yang, F. Zhang, C.Y. Tang, S. Liu, L. Yin, W.C. Law, ACS Appl. Mater. Interfaces 7, 14397–14403 (2015)CrossRefGoogle Scholar
  26. 26.
    P. Chand, A. Gaur, A. Kumar, J. Alloys Compd. 539, 174–178 (2012)CrossRefGoogle Scholar
  27. 27.
    H. Yang, S. Nie, Mater, Chem. Phys. 114, 279–282 (2009)Google Scholar
  28. 28.
    B. Pal, S. Dhara, P.K. Giri, D. Sarkar, J. Alloys Compd. 615, 378–385 (2014)CrossRefGoogle Scholar
  29. 29.
    P. Liu, Y. Huang, L. Wang, W. Zhang, Synth. Metals 177, 89–93 (2013)CrossRefGoogle Scholar
  30. 30.
    B. Ma, X. Zhou, H. Bao, X. Li, G. Wang, J. Power Sources 215, 36–42 (2012)CrossRefGoogle Scholar
  31. 31.
    X. Li, Y. Chai, H. Zhang, G. Wang, X. Feng, Electrochim. Acta 85, 9–15 (2012)CrossRefGoogle Scholar
  32. 32.
    C. Nethravathi, M. Rajamathi, Carbon 46, 1994–1998 (2008)CrossRefGoogle Scholar
  33. 33.
    Y. Wang, G. Xia, C. Wua, J. Sun, R. Song, W. Huang, Carbohydr. Polym. 115, 686–693 (2015)CrossRefGoogle Scholar
  34. 34.
    H.N. Tien, V.H. Luan, L.T. Hoa, N.T. Khoa, S.H. Hahn, J.S. Chung, E.W. Shin, S.H. Hur, Chem. Eng. J. 229, 126–133 (2013)CrossRefGoogle Scholar
  35. 35.
    P. Shi, R. Su, S. Zhu, M. Zhu, D. Li, S. Xu. J. Hazard. Mater. 229, 331–339 (2012)CrossRefGoogle Scholar
  36. 36.
    G.D. Prasanna, H.S. Jayanna, V. Prasad, J. Appl. Polym. Sci. 120, 2856–2862 (2011)CrossRefGoogle Scholar
  37. 37.
    O. Tovide, N. Jahed, C.E. Sunday, K. Pokpas, R. F. Ajayi, H.R. Makelane, K.M. Molapo, S.V. John, P. G. Baker, E I. Iwuoha, Sens. Actuators B 205, 184–192 (2014)CrossRefGoogle Scholar
  38. 38.
    Y. Zhou, B. Xiao, S.Q. Liu, Z. Meng, Z.G. Chen, C.Y. Zou, C.B. Liu, F. Chen, X. Zhou, Chem. Eng. J. 283, 266–275 (2016)CrossRefGoogle Scholar
  39. 39.
    M. Mrlik, M. Ilcikova, T. Plachy, V. Pavlinek, Z. spitalsky, J. Mosnacek, Chem. Eng. J. 283, 717–720 (2016)CrossRefGoogle Scholar
  40. 40.
    A. Lamberti, A. Sacco, M. Laurenti, M. Fontana, C.F. Pirri, S. Bianco, J. Alloys Compd. 615, 487–490 (2014)CrossRefGoogle Scholar
  41. 41.
    A.S.M. Iftekhar Uddin, G.S. Chung Sens. Actuators B 205, 338–344 (2014)CrossRefGoogle Scholar
  42. 42.
    Y.J. Kim, H. Warman, A. Yoon, M.Y. Kim, G.C. Yi, C.L. Liu, Nanotechnology 22, 245603–245611 (2011)CrossRefGoogle Scholar
  43. 43.
    M. Tay, Y.H. Wu, G.C. Han, T.C. Chong, Y.K. Zheng, S.J. Wang, Y.B. Chen, X.Q. Pan, J. Appl. Phys. 100,063910–063919 (2006)CrossRefGoogle Scholar
  44. 44.
    M. Nirmala, A. Anukaliani, Phys. B 406, 911–915 (2011)CrossRefGoogle Scholar
  45. 45.
    N. Ashok Kumar, H.J. Choi, Y.R. Shin, D.W. Chang, L. Dai, J.B. Baek, ACS nano 6, 1715–1723 (2012)CrossRefGoogle Scholar
  46. 46.
    Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS nano 4, 1963–1970 (2010)CrossRefGoogle Scholar
  47. 47.
    J.A. Khan, M. Qasim, B.R. Singh, S. Singh, M. Shoeb, W. Khan, D. Das, A.H. Naqvi, Spectrochim, Acta Part A 109, 313–321(2013)CrossRefGoogle Scholar
  48. 48.
    R. Ramakrishnan, J.D. Sudha, V.L. Reena, RSC Adv. 2, 6228–6236 (2012)CrossRefGoogle Scholar
  49. 49.
    H. Guo, L. Liu, Q. Wei, H. Shu, X. Yang, Z. Yang, M. Zhou, J. Tan, Z. Yan, X. Wang, Electrochim. Acta 94, 113–123 (2013)CrossRefGoogle Scholar
  50. 50.
    S. Bhadra, N. Singha, D. Khastgir, J. Appl. Polym. Sci. 104, 1900–1904 (2007)CrossRefGoogle Scholar
  51. 51.
    D.S. Dhawale, R.R. Salunkhe, V.S. Jamadade, T.P. Gujar, C.D. Lokhande, Appl. Surf. Sci. 255, 8213–8216 (2009)CrossRefGoogle Scholar
  52. 52.
    B.T. Raut, P.R. Godse, S.G. Pawar, M.A. Chougule, D.K. Bandgar, S. Sen, V.B. Patil, J. Phys. Chem. Solids 74, 236–244 (2013)CrossRefGoogle Scholar
  53. 53.
    G.R.F. Edson, A.W.S. Demetrio, A.A.D.Q. Alvar, J. Mater. Sci. 19, 457–462 (2008)Google Scholar
  54. 54.
    S. Giri, D. Ghosh, C.K. Das, J. Electroanal. Chem. 697, 32–45 (2013)CrossRefGoogle Scholar
  55. 55.
    Z.F. Li, H. Zhang, Q. Liu, L. Sun, L. Stanciu, J. Xie, ACS Appl. Mater. Interfaces 5, 2685–2691 (2013)CrossRefGoogle Scholar
  56. 56.
    L. Li, A.R.O. Raji, H. Fei, Y.Yang, E.L.G. Samuel, M.J. Tour, ACS Appl. Mater. Interfaces 5, 6622–6627 (2013)CrossRefGoogle Scholar
  57. 57.
    Z. Tong, Y. Yang, J. Wang, J. Zhao, B.L. Su, Y. Li, J. Mater. Chem. A 2, 4642–4651 (2014)CrossRefGoogle Scholar
  58. 58.
    D. Gui, C. Liu, F. Chen, J. Liu, Appl. Surf. Sci. 307, 172–177 (2014)CrossRefGoogle Scholar
  59. 59.
    W. Chen, X. Tao, Y. Li, H. Wang, D. Wei, C. Ban, J. Mater. Sci. doi: 10.1007/s10854-016-4632-0
  60. 60.
    T. Battumur, S.B. Ambade, R.B. Ambade, P. Pokharel, D.S. Lee, S.H. Han, W. Lee, S.H. Lee, Curr. Appl. Phys. 13, 196–204 (2013)CrossRefGoogle Scholar
  61. 61.
    A. Ramadoss, S.J. Kim, Mater. Chem. Phys 140, 405–411 (2013)CrossRefGoogle Scholar
  62. 62.
    V. Thirumal, A. Pandurangan, R. Jayavel, R. Ilangovan, Synth. Metals 220, 524–532 (2016)CrossRefGoogle Scholar
  63. 63.
    L. Sun, C.G. Tian, Y. Fu, Y. Yang, J. Yin, L. Wang, H. Fu, Chem. Eur. J. 20, 564–574 (2014)CrossRefGoogle Scholar
  64. 64.
    S. Vijayakumar, S. Nagamuthu, S.H. Lee, K.S. Ryu, Int. J. Hydrog. Energy. doi: 10.1016/j.ijhydene.2016.09.159
  65. 65.
    C.Y. Foo, H.N. Lim, M.A.b. Mahdi, K.F. Chong, N.M. Huang, J. Phys. Chem. C 120, 21202–21210 (2016)CrossRefGoogle Scholar
  66. 66.
    M. Yan, Y. Yao, J. Wen, L. Long, M. Kong, G. Zhang, X. Liao, G. Yin, Z. Huang, ACS Appl. Mater. Interfaces 8, 24525–24535 (2016)CrossRefGoogle Scholar
  67. 67.
    R. Dhilip Kumar, Y. Andou, S. Karuppuchamy, J Mater Sci. doi: 10.1007/s10854-016-6203-9

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Industrial Chemistry, School of Chemical SciencesAlagappa UniversityKaraikudiIndia

Personalised recommendations