Synthesis and characterization of high quality {100} diamond single crystal

  • Xuejian Xie
  • Xiwei Wang
  • Yan Peng
  • Yingxin Cui
  • Xiufang Chen
  • Xiaobo Hu
  • Xiangang Xu
  • Peng Yu
  • Ruiqi Wang


Non-destructive characterization of diamond plate can provide abundant information. Consequently, it will help improve the growth technique. In this paper, unintentionally doped {100} diamond single crystal (type Ib) was synthesized by the temperature gradient growth (TGG) method under high pressure (~6.5 GPa) and high temperature (~1500 °C) condition. The crystal morphology was observed by confocal laser scanning microscope (CLSM). The result indicated there was a pit on diamond surface. UV/Vis transmission measurement indicated the maximum transmittance of our sample was about 9% lower than that of theoretical value. Fourier-transformation infrared spectroscopy (FTIR) measurement confirmed that the nitrogen concentration was about 53 ppm. High resolution X-Ray diffractometer (HRXRD) was employed to evaluated the crystalline quality, and result showed that the full width of half maximum (FWHM) at (400) and (111) rocking curves were 56.9′′, 23.7′′, respectively, which revealed the good crystalline quality. In addition, the diffraction peak of (400) lattice plane exhibited an increase trend with the X-ray beam position, showing the (100) lattice surface was convex bended.


Lattice Plane Synthetic Diamond Diamond Single Crystal Nitrogen Impurity Good Crystalline Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by “Science and technology project of China State Grid Corp” under Grant SGSDDK00KJJS1600071, Natural Science Foundation of China under Grants (513230013, 61327808) and National Key Research and Development program under Grant 2016YFB0400201.


  1. 1.
    R. Balmer, J. Brandon, S. Clewes, H. Dhillon, J. Dodson, I. Friel, P. Inglis, T. Madgwick, M. Markham, T. Mollart, J. Phys. 21, 364221 (2009)Google Scholar
  2. 2.
    R. Khmelnitskiy, Prospects for the synthesis of large single-crystal diamonds, Phys.-USP. 58, 134 (2015)CrossRefGoogle Scholar
  3. 3.
    M. Panizza, G. Cerisola, Electrochim. Acta 51, 191 (2005)CrossRefGoogle Scholar
  4. 4.
    M. Willander, M. Friesel, Q.-U. Wahab, B. Straumal, J. Mater. Sci.-Mater. Electron 17, 1 (2006)CrossRefGoogle Scholar
  5. 5.
    Z. Zang, T. Minato, P. Navararetti, Y. Hinokuma, M. Duelk, C. Veelez, K. Hamamoto, IEEE Photonic Tech. L. 22, 721 (2010)CrossRefGoogle Scholar
  6. 6.
    Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, K. Hamamoto, Appl. Phys. Lett. 100, 031108 (2012)CrossRefGoogle Scholar
  7. 7.
    Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, K. Hamamoto, IEICE Trans. Electron E94-C, 862 (2011)CrossRefGoogle Scholar
  8. 8.
    H. Umezawa, M. Nagase, Y. Kato, S.-I. Shikata, Diam. Relat. Mater 24, 201 (2012)CrossRefGoogle Scholar
  9. 9.
    R. Kalish, Carbon 37, 781 (1999)CrossRefGoogle Scholar
  10. 10.
    S. Koizumi, M. Kamo, Y. Sato, S. Mita, A. Sawabe, A. Reznik, C. Uzan-Saguy, R. Kalish, Diam. Relat. Mater 7, 540 (1998)CrossRefGoogle Scholar
  11. 11.
    J. Achard, F. Silva, R. Issaoui, O. Brinza, A. Tallaire, H. Schneider, K. Isoird, H. Ding, S. Koné, M. Pinault, Diam. Relat. Mater 20, 145 (2011)CrossRefGoogle Scholar
  12. 12.
    H. Sumiya, N. Toda, Y. Nishibayashi, S. Satoh, J. Cryst. Growth 178, 485 (1997)CrossRefGoogle Scholar
  13. 13.
    R. Burns, A. Chumakov, S. Connell, D. Dube, H. Godfried, J. Hansen, J. Härtwig, J. Hoszowska, F. Masiello, L. Mkhonza, J. Phys. 21, 364224 (2009)Google Scholar
  14. 14.
    M. Akaishi, H. Kanda, S. Yamaoka, J. Cryst. Growth 104, 578 (1990)CrossRefGoogle Scholar
  15. 15.
    B. Willems, P. Martineau, D. Fisher, J. Van Royen, G. Van Tendeloo, Phys. Status Solid A 203, 3076 (2006)CrossRefGoogle Scholar
  16. 16.
    A. Collins, Diam. Relat. Mater 9, 417 (2000)CrossRefGoogle Scholar
  17. 17.
    L. Bursill, Endeavour 7, 70 (1983)CrossRefGoogle Scholar
  18. 18.
    R. Mildren, J. Rabeau, Optical engineering of diamond, (Wiley, Hoboken, 2013), pp. 2–3CrossRefGoogle Scholar
  19. 19.
    G. Woods, J. Van Wyk, A. Collins, Philos. Mag. B 62, 589 (1990)CrossRefGoogle Scholar
  20. 20.
    Z. Liang, X. Jia, H. Ma, C. Zang, P. Zhu, Q. Guan, H. Kanda, Diam. Relat. Mater 14, 1932 (2005)CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, C. Zang, H. Ma, Z. Liang, L. Zhou, S. Li, X. Jia, Diam. Relat. Mater 17, 209 (2008)CrossRefGoogle Scholar
  22. 22.
    C. Fang, X. Jia, N. Chen, Y. Li, L. Guo, L. Chen, H. Ma, X. Liu, J. Cryst. Growth 436, 34 (2016)CrossRefGoogle Scholar
  23. 23.
    G. Huang, Y. Zheng, L. Peng, Z. Li, X. Jia, H. Ma, CrystEngComm 17, 6504 (2015)CrossRefGoogle Scholar
  24. 24.
    Y. Li, X. Peng, M. Hu, X. Liu, B. Yan, Z. Zhou, Z. Zhang, H. Ma, Chin. Phys. B 21, 058101 (2012)CrossRefGoogle Scholar
  25. 25.
    X. Liu, X. Jia, C. Fang, H. Ma, CrystEngComm 18, 8506 (2016)CrossRefGoogle Scholar
  26. 26.
    C. Fang, X. Jia, S. Sun, B. Yan, Y. Li, N. Chen, Y. Li, H. Ma, High Press. Res. 36, 42 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Prawer, R.J. Nemanich, Phil. Trans. R. Soc. Lond 362, 2537 (2004)CrossRefGoogle Scholar
  28. 28.
    C. Seitz, Z.G. Herro, B.M. Epelbaum, R. Hock, A. Magerl, J. Appl. Crystallogr 39, 17 (2006)CrossRefGoogle Scholar
  29. 29.
    S. Ha, G. S. Rohrer, M. Skowronski, V. D. Heydemann, D. W. Snyder, Mater. Sci. Forum. Trans. Tech. Publ. 338, 67 (2000)CrossRefGoogle Scholar
  30. 30.
    J.W. Lee, M. Skowronski, E.K. Sanchez, G. Chung, J. Cryst. Growth 310, 4126 (2008)CrossRefGoogle Scholar
  31. 31.
    C. Seitz, Z.G. Herro, B.M. Epellbaum, R. Hock, A. Magerl, J. Appl. Crystallogr 39, 17 (2006)CrossRefGoogle Scholar
  32. 32.
    L. Ning, X. Hu, Y. Wang, X. Xu, Y. Gao, Y. Peng, X. Chen, W. Huang, Q. Yuan, J. Appl. Crystallogr 42, 1068 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Xuejian Xie
    • 1
    • 2
  • Xiwei Wang
    • 1
    • 2
    • 3
  • Yan Peng
    • 1
    • 2
  • Yingxin Cui
    • 1
    • 2
  • Xiufang Chen
    • 1
    • 2
  • Xiaobo Hu
    • 1
    • 2
  • Xiangang Xu
    • 1
    • 2
  • Peng Yu
    • 2
    • 4
  • Ruiqi Wang
    • 2
    • 4
  1. 1.State Key Laboratory of Crystal MaterialsShandong UniversityJinanChina
  2. 2.Collaborative Innovation Center for Global Energy Interconnection (Shandong)JinanChina
  3. 3.Jinan Zhongwu New Material Co. LtdJinanChina
  4. 4.State Grid Shandong Electric Power Research InstituteJinanChina

Personalised recommendations