Advertisement

Study of indium catalyst thickness effect on PECVD-grown silicon nanowires properties

  • M. Yaacoubi Tabassi
  • R. Benabderrahmane Zaghouani
  • M. Khelil
  • K. Khirouni
  • W. Dimassi
Article

Abstract

In this work, we focus on the elaboration at low temperature of metal-catalyzed silicon nanowires (SiNWs) obtained by vapor–liquid–solid (VLS) process. In particular, the effect of the metal thickness on SiNWs properties is reported. SiNWs are formed on indium (In) coated Si substrates using SiH4 as a precursor gas in plasma enhanced chemical vapor deposition (PECVD) reactor at a low substrate temperature of 400 °C. Morphological characterization has shown that increasing the thickness of indium layer leads to the increase of the (In) catalysts diameter, the SiNWs density, length and diameter. The grown SiNWs are randomly oriented and have a tapered form with an average length up to 7 µm for a deposition time of 15 min. According to X-ray diffraction patterns, SiNWs are highly crystalline with (111) (220) and (311) plane orientation. The Raman spectra show a downshift of the first-order optical phonon from 520 cm−1 for the c-Si to 517 and 513 cm−1 for SiNWs samples attributed essentially to the confinement effect in silicon nanowires. We notice also that SiNWs are composed essentially of amorphous and crystalline silicon. Increasing the indium thickness leads to the disappearance of the amorphous component and the presence of peaks assigned to nanocrystalline grains induced by the crystallization of the amorphous layer catalyzed by the indium particles.

Keywords

In2O3 Plasma Enhance Chemical Vapor Deposition Indium Oxide Silicon Nanowires Indium Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990)CrossRefGoogle Scholar
  2. 2.
    D. Ma, C.S. Lee, F.C.K. Au, S.Y. Tong, S.T. Lee, Science 299, 1874 (2003)CrossRefGoogle Scholar
  3. 3.
    J. Goldberger, A.I. Hochbaum, R. Fan, P.D. Yang, Nano Lett. 6, 973 (2006)CrossRefGoogle Scholar
  4. 4.
    S.M. Koo, Q. Li, M.D. Edelstein, C.A. Richter, E.M. Vogel, Nano Lett. 5, 2519 (2005)CrossRefGoogle Scholar
  5. 5.
    G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber, Nat. Biotechnol. 23, 1294 (2005)CrossRefGoogle Scholar
  6. 6.
    Y. Cui, Q.Q. Wei, H.K. Park, C.M. Lieber, Science 293, 1289 (2001)CrossRefGoogle Scholar
  7. 7.
    B. Tian, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Nature 449, 885 (2007)CrossRefGoogle Scholar
  8. 8.
    L. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, L. Tsakalakos, Appl. Phys. Lett. 9, 233117 (2007)Google Scholar
  9. 9.
    M.A. Lachiheb, M.A. Zrir, N. Nafie, O. Abbes, J. Yakoubi, M. Bouaicha, Sol. Energy 110, 673 (2014)CrossRefGoogle Scholar
  10. 10.
    B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Liebe, Nature 449, 885 (2007)CrossRefGoogle Scholar
  11. 11.
    R. B. Zaghouani, S. Aouida, N. Bachtouli, B. Bessais, Chem. J. 1, 10 (2015)Google Scholar
  12. 12.
    T.I. Kamins, R.S. Williams, D.P. Basile, T. Hesjedal, S.J. Harris, J. Appl. Phys. 8, 15 (2001)Google Scholar
  13. 13.
    Y. Ke, X. Weng, J.M. Redwing, C.M. Eichfeld, T.R. Swisher, S.E. Mohney, Y.M. Habib, Nano Lett. 9, 4494 (2009)CrossRefGoogle Scholar
  14. 14.
    J. Arbiol, A.F. Morral, S. Estrade, F. Peiro, B. Kalache, P.R. Cabarrocas, J.R. Morante, J. Appl. Phys. 104, 064312 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Conesa-Boj, I. Zardo, S. Estrade, Li Wei, P.J. Alet, P.R. Cabarrocas, J.R. Morante, F. Peiro, A.F. Morral, J. Arbiol, Cryst. Growth Des. 10, 1534 (2010)CrossRefGoogle Scholar
  16. 16.
    T. Baron, M. Gordon, F. Dhalluin, C. Ternon, P. Ferret, P. Gentile, Appl. Phys. Lett. 89, 233111 (2006)CrossRefGoogle Scholar
  17. 17.
    R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)CrossRefGoogle Scholar
  18. 18.
    R.R. Kumar, K.N. Rao, A.R. Phani, Mater. Lett. 66, 110 (2012)CrossRefGoogle Scholar
  19. 19.
    I. Zardo, L. Yu, S. Conesa Boj, S. Estrade, P.J. Alet, J. Rossler, M. Frimmer, P.R. Cabarrocas, F. Peiro, J. Arbiol, J.R. Morante, A.F. Moral, Nanotechnology 20, 155602 (2009)CrossRefGoogle Scholar
  20. 20.
    P.J. Alet, L. Yu, G. Patriarche, S. Palacin, P.R. Cabarrocas, J. Mater. Chem. 18, 5187 (2008)CrossRefGoogle Scholar
  21. 21.
    T. Dhalluin, P. Baron, B. Ferret, P.G. Salementile, J.C. Harmand, Appl. Phys. Lett. 96, 133109 (2010)CrossRefGoogle Scholar
  22. 22.
    B. Ressel, K.C. Prince, S. Heun, J. Appl. Phys. 93, 3886 (2009)CrossRefGoogle Scholar
  23. 23.
    M. Mattila, T. Hakkarainen, H. Lipsanen, Appl. Phys. Lett. 89, 063119 (2006)CrossRefGoogle Scholar
  24. 24.
    J.F. Hsu, B.R. Huang, Thin Solid Films 514, 20 (2006)CrossRefGoogle Scholar
  25. 25.
    R.P. Wang, G.W. Zhou, Y.L. Liu, S.H. Pan, H.Z. Zhang, D.P. Yu, Z. Zhang, Phys. Rev. B 61, 24 (2000)CrossRefGoogle Scholar
  26. 26.
    B. Li, D. Yu, S.L. Zhang, Phys. Rev. B 59, 3 (1999)Google Scholar
  27. 27.
    S.B. Amor, M. Atyaoui, R. Bousbih, I. Haddadi, W. Dimassi, H. Ezzaouia, Sol. Energy 108, 126 (2014)CrossRefGoogle Scholar
  28. 28.
    B.T. Goh, C.K. Wah, Z. Aspanut, S. Abdul Rahman, J. Mater Sci. Mater Electron. 25, 286 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • M. Yaacoubi Tabassi
    • 1
  • R. Benabderrahmane Zaghouani
    • 2
  • M. Khelil
    • 3
  • K. Khirouni
    • 3
  • W. Dimassi
    • 1
  1. 1.Centre for Research and Technology of EnergyTechnology Park of Borj-CedriaHammam-LifTunisia
  2. 2.Photovoltaic LaboratoryCentre for Research and Technology of EnergyHammam-LifTunisia
  3. 3.Laboratory of Physics of Materials and Nanomaterials Applied to the Environment, Faculty of GabesUniversity of GabesGabesTunisia

Personalised recommendations