Morphology control and magnetic properties of cauliflower-like CeO2 synthesized by a facile template-free hydrothermal method

  • Huijie Li
  • Fanming Meng
  • Jinfeng Gong
  • Zhenghua Fan
  • Rui Qin


Cauliflower-like CeO2 particles composed of numerous nanorods with variable diameters of 100–220 nm have been successfully synthesized via a facile template-free hydrothermal method. The influences of the reaction time on the morphologies, crystal structures, and magnetic properties of the resulting products have been investigated. X-ray photoelectron spectroscopy shows that Ce4+ and Ce3+ ions coexist at the surface of the particles. M–H curve with the saturation magnetization (Ms) of 2.72 × 10− 2 emu/g, residual magnetization (Mr) of 0.58 × 10− 2 emu/g and coercivity (Hc) of 275 Oe, exhibits excellent room-temperature ferromagnetism, which is likely ascribed to their synergistic effect of the Ce3+ ions and oxygen vacancies.


Cerium CeO2 Oxygen Vacancy Trisodium Citrate Residual Magnetization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Anhui Provincial Natural Science Foundation of China (1508085SME219).


  1. 1.
    L.W. Zeng, D.Q. Chen, F. Huang, A.P. Yang, L. Lei, Y.S. Wang, J. Alloys Compd. 534, 64–69 (2012)CrossRefGoogle Scholar
  2. 2.
    X.D. Zhou, W. Huebner, H.U. Anderson, Chem. Mater. 15, 378–382 (2002)CrossRefGoogle Scholar
  3. 3.
    S.Y. Chen, Y.H. Lu, T.W. Huang, D.C. Yan, C.L. Dong, J. Phys. Chem. C 114, 19576–19581 (2010)CrossRefGoogle Scholar
  4. 4.
    A.M.S. Abdel-Hameed, H.M. Fatma, A.O. Mona, J. Alloys Compd. 554, 371–377 (2013)CrossRefGoogle Scholar
  5. 5.
    M.Y. Ge, H. Wang, E.Z. Liu, J.F. Liu, J.Z. Jiang, Y.K. Li, Z.A. Xu, H.Y. Li, Appl. Phys. Lett. 93, 062505–062508 (2008)CrossRefGoogle Scholar
  6. 6.
    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173–179 (2005)CrossRefGoogle Scholar
  7. 7.
    M. Jobbagy, F. Marino, B. Schonbrod, G. Baronetti, M. Laborde, Chem. Mater. 18, 1945–1950 (2006)CrossRefGoogle Scholar
  8. 8.
    C. Paun, O.V. Safonova, J. Szlachetko, P.M. Abdala, M. Nachtegaal, J. Sa, E. Kleymenov, A. Cervellino, F. Krumeich, J.A. van Bokhoven, J. Phys. Chem. C 116, 7312–7317 (2012)CrossRefGoogle Scholar
  9. 9.
    H. Xiao, Z. Ai, L. Zhang, J. Phys. Chem. C 113, 16625–16630 (2009)CrossRefGoogle Scholar
  10. 10.
    L. Xu, H. Song, B. Dong, Y. Wang, J. Chen, X. Bai, Inorg. Chem. 49, 10590–10597 (2010)CrossRefGoogle Scholar
  11. 11.
    Z. Yang, D. Han, D. Ma, H. Liang, L. Liu, Y. Yang, Cryst. Growth Des. 10, 291–295 (2010)CrossRefGoogle Scholar
  12. 12.
    H. Imagawa, S.H. Sun, J. Phys. Chem. C 116, 2761–2765 (2012)CrossRefGoogle Scholar
  13. 13.
    X.H. Lu, X. Huang, S.L. Xie, D.Z. Zheng, Z.Q. Liu, C.L. Liang, Y.X. Tong, Langmuir 26, 7569–7573 (2010)CrossRefGoogle Scholar
  14. 14.
    J. Wei, Z. Yang, H. Yang, T. Sun, Y. Yang, Cryst Eng Comm 13, 4950–4955 (2011)CrossRefGoogle Scholar
  15. 15.
    X.H. Lu, D.Z. Zheng, J.Y. Gan, Z.Q. Liu, C.L. Liang, P. Liu, Y.X. Tong, J. Mater. Chem. 20, 7118–7122 (2010)CrossRefGoogle Scholar
  16. 16.
    K.B. Zhou, X. Wang, X.M. Sun, Q. Peng, Y.D. Li, J. Catal. 229, 206–212 (2005)CrossRefGoogle Scholar
  17. 17.
    G.Z. Chen, C.X. Xu, X.Y. Song, W. Zhao, Y. Ding, S.X. Sun, Inorg. Chem. 47, 723–728 (2008)CrossRefGoogle Scholar
  18. 18.
    X.J. Du, D.S. Zhang, L.Y. Shi, R.H. Gao, J.P. Zhang, J. Phys. Chem. C 116, 10009–10016 (2012)CrossRefGoogle Scholar
  19. 19.
    X.P. Yang, H.P. Pana, P. Wang, F.J. Zhao, J. Hazard. Mater. 322, 292–300 (2017)CrossRefGoogle Scholar
  20. 20.
    Z. Zhang, L. Guo, C. Xi, J. Li, Z. Li, L. Peng, Mater. Lett. 69, 89–91 (2012)CrossRefGoogle Scholar
  21. 21.
    R.K. Singhal, P. Kumari, A. Samariya, S. Kumar, S.C. Sharma, Y.T. Xing, E.B. Saitovitch, Appl. Phys. Lett. 97, 172503 (2010)CrossRefGoogle Scholar
  22. 22.
    G. Brahmachari, B. Banerjee, Asian J. Org. Chem. 5, 271–286 (2016)CrossRefGoogle Scholar
  23. 23.
    S. Deshpande, S. Patil, S.V. Kuchibhatla, S. Seal, Appl. Phys. Lett. 87, 133113–133116 (2005)CrossRefGoogle Scholar
  24. 24.
    W. Gao, Z.Y. Zhang, J. Li, Y.Y. Ma, Y.Q. Qu, Nanoscale 7, 11686–11691 (2015)CrossRefGoogle Scholar
  25. 25.
    R. Yu, L. Yan, P. Zheng, J. Chen, X.R. Xing, J. Phys. Chem. C 112, 19896–19900 (2008)CrossRefGoogle Scholar
  26. 26.
    Y.G. Wang, J.W. Ren, Y.Q. Wang, F.Y. Zhang, X.H. Liu, Y. Guo, G.Z. Lu, J. Phys. Chem. C, 112, 15293–15298 (2008)CrossRefGoogle Scholar
  27. 27.
    Y.M. So, G.C. Wang, H.Y. Sung, I.D. Williams, W.H. Leung, Dalton T. 45, 8770–8776 (2016)CrossRefGoogle Scholar
  28. 28.
    F.L. Liang, Y. Yu, W. Zhou, X.Y. Xu, Z.H. Zhu, J. Mater. Chem. A 3, 634–640 (2015)CrossRefGoogle Scholar
  29. 29.
    N. Paunovic, Z. Dohcevic-Mitrovic, R. Scurtu, S. Askrabic, M. Prekajski, B. Matovic, Z.V. Popovic, Nanoscale 4, 5469–5476 (2012)CrossRefGoogle Scholar
  30. 30.
    M.I.B. Bernardi, A. Mesquita, F. Beron, K.R. Pirota, A.O.D. Zevallos, A.C. Doriguetto, H.B.D. Carvalho, Phys. Chem. Chem. Phys. 17, 3072–3080 (2015)CrossRefGoogle Scholar
  31. 31.
    L.N. Wang, F.M. Meng, Mater. Res. Bull. 48, 3492–3498 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Huijie Li
    • 1
  • Fanming Meng
    • 1
  • Jinfeng Gong
    • 1
  • Zhenghua Fan
    • 1
  • Rui Qin
    • 1
  1. 1.School of Physics and Materials ScienceAnhui UniversityHefeiPeople’s Republic of China

Personalised recommendations