Influence of AZO amorphous structure on n-AZO/p-Cu2O heterojunction diode photoluminescence properties

  • L. Dejam
  • A. A. Shokri
  • H. Honarvar Nazari
  • S. M. Elahi


In this work two samples of Ag/Cu/Cu2O and Al:ZnO (AZO) multilayers, on glass substrates were prepared. The Ag/Cu layers were obtained by the physical vapor deposition (PVD) method, while the Cu2O and AZO layers were deposited by DC reactive magnetron sputtering. The structural and morphology properties of the considered samples were studied. The X-ray diffraction (XRD) showed that the first junction signifies a crystal structure of compounds of Ag, Cu and Cu2O, but the latter sample showed an amorphous structure. It was shown that the roughness of glass/Ag/Cu/Cu2O layers was substantially lower than the roughness of AZO layer deposited on glass substrate. In addition, the microstructure consideration revealed that the glass/Ag/Cu/Cu2O surface morphology was highly homogenous with average grain size of 35 nm. Moreover, we investigated the properties of the Cu2O/AZO heterojunction. The low turn-on voltage of about 0.64 V was obtained, which indicate that the heterojunction acts as a rectifier diode. The ideality factor was determined to be 10.28.


Cu2O Ideality Factor Surface Resistivity Heterojunction Diode Shallow Donor Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with ethical standards

Conflict of interest

The authors report no conflict of interests. The authors alone are responsible for the content and writing of the paper.


  1. 1.
    R.H. Bube, Photovoltaic Materials. (Imperial College Press, London, 1998)Google Scholar
  2. 2.
    H. Nagai, T. Suzuki, H. Hara et al., Mater. Chem. Phys. 137, 252 (2012)CrossRefGoogle Scholar
  3. 3.
    L. Dejam, S.M. Elahi, M.M. Larijani, Y.S. Jalili, Bull. Mater. Sci. 38, 1821 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Solaymani, A Ghaderi, N.B. Nezafat. J. Fusion Energ. 31, 591 (2012)CrossRefGoogle Scholar
  5. 5.
    S. Sargolzaei, H. Elahi, A. Sokoloff, M. Ghovanloo, IEEE Trans. Biomed. Eng. (2016). doi: 10.1109/TBME.2016.2638545 Google Scholar
  6. 6.
    N. Naseri, S. Solaymani, A. Ghaderi, M. Bramowicz, S. Kulesza, Ş. Ţălu, M Pourreza, S. Ghasemig RSC Adv 7: 12923 (2017)CrossRefGoogle Scholar
  7. 7.
    C.-L. Hsu, J.-Y. Tsai, T.-J. Hsueh, Sens. Actuators B 224, 95 (2016)CrossRefGoogle Scholar
  8. 8.
    B. Balamurugan, B.R. Mehta, Thin Solid Films 396, 90 (2001)CrossRefGoogle Scholar
  9. 9.
    S. Noda, H. Shima, H. Akinaga, J. Phys. Conf. Ser. 433, 012027 (2013)CrossRefGoogle Scholar
  10. 10.
    T.-H. Chen, T.-C. Cheng, Z.-R. Hu, Microsyst. Technol. 19, 1787 (2013)CrossRefGoogle Scholar
  11. 11.
    C.C. Singh, T.A. Patel, E. Panda, J. Appl. Phys. 117, 245312 (2015)CrossRefGoogle Scholar
  12. 12.
    L. Dejam, S. Mohammad Elahi, H.H. Nazari, H. Elahi, S. Solaymani, A. Ghaderi, J. Mater. Sci: Mater. Electron. 27, 685 (2016)Google Scholar
  13. 13.
    I. Valenti, S. Benedetti, A. di Bona et al., J. Appl. Phys. 118, 165304 (2015)CrossRefGoogle Scholar
  14. 14.
    S. Naderi, A. Ghaderi, S. Solaymani, M.M. Golzan, Eur. Phys. J. Appl. Phys. 58, 131 (2012)CrossRefGoogle Scholar
  15. 15.
    S. Sutthana, N. Hongsith, S. Choopun, Curr. Appl. Phys. 10, 813 (2010)CrossRefGoogle Scholar
  16. 16.
    A.S. Reddy, S. Uthanna, P.S. Reddy, Appl. Surf. Sci. 253, 5287 (2007)CrossRefGoogle Scholar
  17. 17.
    C.L. Azanza Ricardo, M. D’Incau, M. Leoni, C. Malerba, A. Mittiga, P. Scardi, Thin Solid Films 520, 280 (2011)CrossRefGoogle Scholar
  18. 18.
    Ş. Ţălu, M. Bramowicz, S. Kulesza et al., Superlattices Microstruct. 93, 109 (2016)CrossRefGoogle Scholar
  19. 19.
    V. Dalouji, S.M. Elahi, S. Solaymani, A. Ghaderi, Eur. Phys. J. Plus 131, 84 (2016)CrossRefGoogle Scholar
  20. 20.
    Y.-F. Lim, C.S. Chua, C.J.J. Lee, D. Chi, Phys. Chem. Chem. Phys. 16, 25928 (2014)CrossRefGoogle Scholar
  21. 21.
    K.E. Lee, M. Wang, E.J. Kim, S.H. Hahn, Curr. Appl. Phys. 9, 683 (2009)CrossRefGoogle Scholar
  22. 22.
    J. Kim, J.-H. Yun, S.-W. Jee et al., Mater. Lett. 65, 786 (2011)CrossRefGoogle Scholar
  23. 23.
    J.H. Hsieh, P.W. Kuo, K.C. Peng, S.J. Liu, J.D. Hsueh, S.C. Chang, Thin Solid Films 516, 5449 (2008)CrossRefGoogle Scholar
  24. 24.
    Ü. Özgür, Y.I. Alivov, C. Liu, et al., J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  25. 25.
    A.S. Reddy, H.-H. Park, V.S. Reddy et al., Mater. Chem. Phys. 110, 397 (2008)CrossRefGoogle Scholar
  26. 26.
    C.-L. Chu, H.-C. Lu, C.-Y. Lo, C.-Y. Lai, Y.-H. Wang, Physics B 404, 4831 (2009)CrossRefGoogle Scholar
  27. 27.
    I. Ben Mbarek, F. Chaabouni, M. Selmi, M. Abaab, B. Rezig, Phys. Status Solidi (c) 7: 2311 (2010)CrossRefGoogle Scholar
  28. 28.
    M. Tadatsugu, T. Hideki, S. Takahiro, M. Toshihiro, S. Hirotoshi. Jpn. J. Appl. Phys. 43, L917 (2004)CrossRefGoogle Scholar
  29. 29.
    Z. Kang, X. Yan, Y. Wang, et al., Sci. Rep. 5, 7882 (2015)CrossRefGoogle Scholar
  30. 30.
    C.-C. Hsu, C.-H. Wu, S.-Y. Wang, J. Alloys Compd. 663, 262 (2016)CrossRefGoogle Scholar
  31. 31.
    T. Minami, T. Miyata, Y. Nishi, Sol. Energy 105, 206 (2014)CrossRefGoogle Scholar
  32. 32.
    C. Wei-Chung, H. Po-Ching, C. Chih-Wei et al., J. Phys. D 47, 365101 (2014)CrossRefGoogle Scholar
  33. 33.
    D. Dorranian, L. Dejam, A.H. Sari, A. Hojabri, Eur. Phys. J. Appl. Phys. 50, 20503 (2010)CrossRefGoogle Scholar
  34. 34.
    I. Mukherjee, S. Chatterjee, N.A. Kulkarni, J. Phys. Chem. C 120, 1077 (2016)CrossRefGoogle Scholar
  35. 35.
    B. Balamurugan, I. Aruna, B.R. Mehta, S.M. Shivaprasad, Phys. Rev. B 69, 165419 (2004)CrossRefGoogle Scholar
  36. 36.
    R.K. Swarnkar, S.C. Singh, R. Gopal, Bull. Mater. Sci. 34, 1363 (2011)CrossRefGoogle Scholar
  37. 37.
    H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 20, 561 (2010)CrossRefGoogle Scholar
  38. 38.
    Y. Chen, S.Y. Ma, Mater. Lett. 162, 75 (2016)CrossRefGoogle Scholar
  39. 39.
    E.-J. Yun, J.W. Jung, B.C. Lee, M. Jung, Surf. Coat. Technol. 205, 5130 (2011)CrossRefGoogle Scholar
  40. 40.
    Q.P. Wang, D.H. Zhang, H.L. Ma, X.H. Zhang, X.J. Zhang, Appl. Surf. Sci. 220, 12 (2003)CrossRefGoogle Scholar
  41. 41.
    Z.Y. Xue, D.H. Zhang, Q.P. Wang, J.H. Wang, Appl. Surf. Sci. 195, 126 (2002)CrossRefGoogle Scholar
  42. 42.
    M. Alauddin, J.K. Song, S.M. Park, Appl. Phys. A 101, 707 (2010)CrossRefGoogle Scholar
  43. 43.
    A.I. Ali, C.H. Kim, J.H. Cho, B.G. Kim, J. Korean Phys. Soc. 49, 5 (2006)Google Scholar
  44. 44.
    L. Dghoughi, F. Ouachtari, M. Addou et al., Physics B 405, 2277 (2010)CrossRefGoogle Scholar
  45. 45.
    F.-H. Wang, H.-P. Chang, C.-C. Tseng, C.-C. Huang, H.-W. Liu, Curr. Appl. Phys. 11, S12 (2011)CrossRefGoogle Scholar
  46. 46.
    C.M. Muiva, T.S. Sathiaraj, K. Maabong, Ceram. Int. 37, 555 (2011)CrossRefGoogle Scholar
  47. 47.
    Yutaka Ohno, Shigeru Kishimoto, Koichi Maezawa, Takashi Mizutani, Jpn. J. Appl. Phys. 39, 35 (2000)CrossRefGoogle Scholar
  48. 48.
    S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley India Pvt. Limited, New Delhi, 2008)Google Scholar
  49. 49.
    J.-J. Ma, K.-X. Jin, B.-C. Luo, et al., Chin. Phys. Lett. 27, 107304 (2010)CrossRefGoogle Scholar
  50. 50.
    C.-X. Wang, G.-W. Yang, H.-W. Liu et al., Appl. Phys. Lett. 84, 2427 (2004)CrossRefGoogle Scholar
  51. 51.
    K. Mayes, A. Yasan, R. McClintock et al., Appl. phys. Lett. 84, 1046 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • L. Dejam
    • 1
  • A. A. Shokri
    • 1
  • H. Honarvar Nazari
    • 2
    • 3
  • S. M. Elahi
    • 4
  1. 1.Department of PhysicsPayame Noor University (PNU)TehranIran
  2. 2.Kish Solar Trading CompanyKish IslandIran
  3. 3.Materials Science and EngineeringBinghamton UniversityBinghamtonUSA
  4. 4.Plasma Physics Research CenterScience and Research Branch Islamic Azad UniversityTehranIran

Personalised recommendations