Synthesis and systematic investigations of Al and Cu-doped ZnO nanoparticles and its structural, optical and photo-catalytic properties

  • S. Kumaresan
  • K. Vallalperuman
  • S. Sathishkumar
  • M. Karthik
  • P. SivaKarthik


Here we report, copper (Cu) and Aluminum (Al) doped zinc oxide (ZnO) nanoparticles by a novel one step microwave irradiation method for the first time. Powder X-ray diffraction (XRD) reveals that both pure and doped samples assigned to hexagonal wurtzite type structure. The calculated average crystalline size decreases from 24 to 11 nm for pure and doped (Al and Cu) ZnO respectively, which is in good agreement with the particles size observed from Transmission Electron Microscope (TEM) analyses. A considerable red shift in the absorption edge and the reduction in the energy gap from 3.35 to 2.95 eV reveal the substitution of Al3+ and Cu2+ ions into the ZnO lattice analyzed by UV–Vis transmission spectra. The photocatalytic degradation of Methyl Violet (MV), Phenol and Rhodamine B (RHB) was investigated by using pure, Al and Cu doped ZnO catalyst under UV light irradiation. The results showed that the photocatalytic property is significantly improved by Cu doping concentration. This could be attributed to extended visible light absorption, inhibition of the electronehole pair’s recombination and enhanced adsorptivity of dye molecule on the surface of Cu–ZnO nanopowders. The samples were further characterized by photoluminescence spectra and Fourier Infrared Spectra (FTIR) analysis.


Photocatalytic Activity Photocatalytic Property Methyl Violet Microwave Irradiation Method Hexagonal Wurtzite Type Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S.G. Kumar, L.G. Devi, J. Phys. Chem. A 115, 13211–13241 (2011)CrossRefGoogle Scholar
  2. 2.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919–9986 (2014)CrossRefGoogle Scholar
  3. 3.
    L. Liu, X. Chen, Chem. Rev. 114, 9890–9918 (2014)CrossRefGoogle Scholar
  4. 4.
    S.W. Vergruggen, J. Photochem. Photobiol. C Photochem. Rev. 24, 64–82 (2015)CrossRefGoogle Scholar
  5. 5.
    S.G. Kumar, K.S.R.K. Rao, Appl. Surf. Sci. 355, 939–958 (2015)CrossRefGoogle Scholar
  6. 6.
    Z.F. Huang, J. Song, L. Pan, X. Zhang, L. Wang, J.J. Zou, Adv. Mater. 27, 5309–5327 (2015)CrossRefGoogle Scholar
  7. 7.
    S.G. Kumar, K.S.R.K. Rao, RSC Adv. 5, 3306–3351 (2015)CrossRefGoogle Scholar
  8. 8.
    L. Pan, G.Q. Shen, J.W. Zhang, X.C. Wei XC, L. Wang, J.J. Zou et al., Ind. Eng. Chem. Res 54, 7226–7232 (2015)CrossRefGoogle Scholar
  9. 9.
    A. Khataee, R.D.C. Soltani, Y. Hanifehpour, M. Safarpour, H.G. Ranjbar, S.W. Joo, Ind. Eng. Chem. Res. 53, 1924–1932 (2014)CrossRefGoogle Scholar
  10. 10.
    B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, Langmuir 29, 939–949 (2013)CrossRefGoogle Scholar
  11. 11.
    S. Kuriakose, B. Satpati, S. Mohapatra, Phys. Chem. Chem. Phys. 16, 12741–12749 (2014)CrossRefGoogle Scholar
  12. 12.
    C. Yu, K. Yang, W. Zhou, Q. Fan, L. Wei, J.C. Yu, J. Phys. Chem. Solids 74, 1714–1720 (2013)CrossRefGoogle Scholar
  13. 13.
    H. Bouzid, M. Faisal, F.A. Harraza, S.A. Al-Sayari, A.A. Ismail, Catal. Today 252, 20–26 (2015)CrossRefGoogle Scholar
  14. 14.
    P. Li, Z. Wei, T. Wu, Q. Peng, Y. Li, J. Am. Chem. Soc. 133, 5660–5663 (2011)CrossRefGoogle Scholar
  15. 15.
    Y. Liu, S. Wei, W. Gao, J. Hazard. Mater. 287, 59–68 (2015)CrossRefGoogle Scholar
  16. 16.
    Z.J. Wu, W. Huang, K.K. Cui, Z.F. Gao, P. Wang, J. Hazard. Mater. 278, 91–99 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, J. Mater. Sci. Mater. Electron. 25 730–735 (2014)CrossRefGoogle Scholar
  18. 18.
    D. Madhan, M. Parthibavarman, P. Rajkumar, M. Sangeetha, J. Mater. Sci. Mater. Electron. 26, 6823–6830 (2015)CrossRefGoogle Scholar
  19. 19.
    Z.B. Bashi, M.H. Aslan, M. Ozer, A.Y. Oral, Cryst. Res. Technol. 44, 961–966 (2009)CrossRefGoogle Scholar
  20. 20.
    M. Ahmad, E. Ahmed, Y. Zhang, N.R. Khalid, J. Xu, M. Ullah, Z. Hong, Curr. Appl. Phys. 13, 697–704 (2013)CrossRefGoogle Scholar
  21. 21.
    M. Ferhat, A. Zaoui, R. Ahuja, Appl. Phys. Lett. 94, 142502–142504 (2009)CrossRefGoogle Scholar
  22. 22.
    P. Sagar, P.K. Shishodia, R.M. Mehra, H. Okada, A. Wakahara, A. Yoshida, J. Luminescen 126, 800–806 (2007)CrossRefGoogle Scholar
  23. 23.
    B. Guo, Z.R. Qiu, K.S. Wong, Appl. Phys. Lett. 82, 2290–2292 (2003)CrossRefGoogle Scholar
  24. 24.
    A.J. Reddy, M.K. Kokila, H. Nagabhushan, R.P.S. Chakradhar, C. Shivakumar, J.L. Rao, B.M. Nagabhushan, J. Alloys Compd. 509, 5349–5355 (2011)CrossRefGoogle Scholar
  25. 25.
    M. Arshad, A. Azam, A.S. Ahmed, S. Mollah, A.H. Naqvi, J. Alloys Comp. 509, 8378–8381 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Research and Development CentreBharathiar UniversityCoimbatoreIndia
  2. 2.Department of PhysicsThiru Kolanjiappar Government Arts CollegeVriddhachalamIndia
  3. 3.Department of ChemistryUniversity College of EngineeringPanrutiIndia

Personalised recommendations