Anisotropically conductive polypropylene/nickel coated glass fiber composite via magnetic field inducement

  • Yadong Xu
  • Yaqi Yang
  • Dingxiang Yan
  • Hongji Duan
  • Chunyu Dong
  • Guizhe Zhao
  • Yaqing Liu


In this work, we have reported a facile strategy to prepare an anisotropic conductive polypropylene/nickel coated glass fiber (PP/NCGF) composite with aligned NCGF network, through magnetic-assistant compression molding method. Owing to the high aspect ratio and particular magnetism, the conductive NCGF exhibits significant responsivity to the magnetic field during the molding process and thus aligns automatically in the PP matrix. The resultant PP/NCGF composite shows obvious anisotropy in electrical and electromagnetic interference (EMI) shielding performance. The electrical conductivity parallel to the magnetic field direction (1.46 S/m) is 18 times higher than that of perpendicular direction (8.06 × 10−2 S/m), and the EMI shielding effectiveness shows 8 dB disparity (15 dB in parallel direction and 23 dB in perpendicular direction). The anisotropic PP/NCGF composite would be considered as promising EMI shielding material where discrepant shielding level is required in orthogonal directions.


Conductive Filler Conductive Network Magnetic Field Direction Shield Effectiveness Magnetic Field Inducement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the financial support of this work by Natural Science Foundation of Shanxi Province (No. 2014021018-5). We also thanks for the support by Science and Technology Innovation Team of New Functional Polymeric Composites of Shanxi Province.


  1. 1.
    Z.Y. Lin, Y. Liu, S. Raghavan, K. Moon, S.K. Sitaraman, C.P. Wong, ACS Appl. Mater. Inter. 5, 7633–7640 (2013)CrossRefGoogle Scholar
  2. 2.
    D.Y. Yan, H. Pang, B. Li, R. Vajtai, Z.M. Li et al., Adv. Funct. Mater. 25, 559–566 (2015)CrossRefGoogle Scholar
  3. 3.
    D.X. Yan, P.G. Ren, H. Pang, Q. Fu, M.B. Yang, Z.M. Li, J. Mater. Chem. 22, 18772–18774 (2012)CrossRefGoogle Scholar
  4. 4.
    J.F. Gao, D.X. Yan, B. Yuan, H.D. Huang, Z.M. Li, Composi. Sci. Technol. 70, 1973–1979 (2010)CrossRefGoogle Scholar
  5. 5.
    Y. Chen, Y.L. Wang, H.B. Zhang, X.F. Li, C.X. Gui, Z.Z. Yu, Carbon 82, 67–76 (2015)CrossRefGoogle Scholar
  6. 6.
    O. Trotsenko, A. Tokarev, A. Gruzd, T. Enright, S. Minko, Nanoscale 7, 7155–7161 (2015)CrossRefGoogle Scholar
  7. 7.
    L. Jin, C. Bower, O. Zhou, Appl. Phys. Lett. 73, 1197–1199 (1998)CrossRefGoogle Scholar
  8. 8.
    G.H. Chen, H.Q. Wang, W.F. Zhao, Polym. Adv. Technol. 19, 1113–1117 (2008)CrossRefGoogle Scholar
  9. 9.
    C.A. Martin, J.K.W. Sandler, A.H. Windle, M.K. Schwarz, W. Bauhofer, K. Schulte, M.S.P. Shaffer, Polymer 46, 877–886 (2005)CrossRefGoogle Scholar
  10. 10.
    T. Kimura, H. Ago, M. Tobita, S. Ohshima, S. Kyotani, M. Yumura, Adv. Mater. 14, 1380–1383 (2002)CrossRefGoogle Scholar
  11. 11.
    B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet et al., Science 290, 1331–1334 (2000)CrossRefGoogle Scholar
  12. 12.
    F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. Yang et al., Adv. Mater. 15, 1161–1165 (2003)CrossRefGoogle Scholar
  13. 13.
    R. Sen, B. Zhao, D. Perea, M.E. Itkis, H. Hu, J. Love et al., Nano Lett. 4, 459–464 (2004)CrossRefGoogle Scholar
  14. 14.
    W.L. Song, P. Wang, L. Cao, A. Anderson, M.J. Meziani, A.J. Farr, Y.P. Sun, Angew. Chem. Int. Ed. 51, 6498–6501 (2012)CrossRefGoogle Scholar
  15. 15.
    F.L. Yu, H. Deng, Q. Zhang, K. Wang, C.L. Zhang, F. Chen, Q. Fu, Polymer 54, 6425–6436 (2013)CrossRefGoogle Scholar
  16. 16.
    M.A. Correa-Duarte, M. Grzelczak, V. Salgueirino-Maceira, M. Giersig, L.M. Liz-Marzan, M. Farle, K. Sierazdki, R. Diaz, J. Phys. Chem. B 109, 19060–19063 (2005)CrossRefGoogle Scholar
  17. 17.
    R.M. Erb, R. Libanori, N. Rothfuchs, A.R. Studart, Science 335, 199–204 (2012)CrossRefGoogle Scholar
  18. 18.
    A. Boudenne, Y. Mamunya, V. Levchenko, B. Garnier, E. Lebedev, Eur. Polym. J. 63, 11–19 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Knaapila, H. Hoyer, J. Kjelstrup-Hansen, et al., ACS Appl. Mater. Inter. 6, 3469–3476 (2014)CrossRefGoogle Scholar
  20. 20.
    T. Nagai, N. Aoki, Y. Ochiai, et al., ACS Appl. Mater. Inter. 3, 2341–2348 (2011)CrossRefGoogle Scholar
  21. 21.
    C. Ma, H.Y. Liu, X. Du et al., Compos. Sci. Technol. 114, 126–135 (2015)CrossRefGoogle Scholar
  22. 22.
    S. Wu, R.B. Ladani, J. Zhang et al., Polymer 68, 25–34 (2015)CrossRefGoogle Scholar
  23. 23.
    T. Kimura, H. Ago, M. Tobita et al., Adv. Mater. 14, 1380–1383 (2002)CrossRefGoogle Scholar
  24. 24.
    I.T. Kim, J.H. Lee, M.L. Shofner et al., Polymer 53, 2402–2411 (2012)CrossRefGoogle Scholar
  25. 25.
    B.W. Steinert, D.R. Dean, Polymer 50, 898–904 (2009)CrossRefGoogle Scholar
  26. 26.
    I.T. Kim, A. Tannenbaum, R. Tannenbaum, Carbon 49, 54–61 (2011)CrossRefGoogle Scholar
  27. 27.
    S.G. Prolongo, B.G. Meliton, G. Del Rosario et al., Compos. Part B 46, 166–172 (2013)CrossRefGoogle Scholar
  28. 28.
    C. Guo, H.J. Duan, C.Y. Dong, G.Z. Zhao, Y.Q. Liu, Y.Q. Yang, Mater. Lett. 143, 124–127 (2015)CrossRefGoogle Scholar
  29. 29.
    R.H. Zhou, H.Y. Chen, C.J. Xu, X. Hou, G.L. Liu, Y.Q. Liu, J. Mater. Sci. 6, 3530–3537 (2015)Google Scholar
  30. 30.
    S.I. White, B.A. DiDonna, M. Mu, T.C. Lubensky, K.I. Winey, Phys. Rev. B 79, 024301 (2009)CrossRefGoogle Scholar
  31. 31.
    H.D. Huang, C.Y. Liu, D. Zhou, X. Jiang, G.J. Zhong, D.X. Yan, Z.M. Li, J. Mate. Chem. A 3, 4983–4991 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Key Laboratory of Functional Nanocomposites of Shanxi Province, College of Materials Science and EngineeringNorth University of ChinaTaiyuanPeople’s Republic of China
  2. 2.School of Aeronautics and AstronauticsSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations