Structural and optical properties of CdZnTe quantum dots capped with a bifunctional Molecule

  • Asmaa Al-Rasheedi
  • S. Wageh
  • Ebtesam Al-Zhrani
  • Ahmed Al-Ghamdi


CdTe and ternary CdZnTe quantum dots capped with 3-mercaptopropionic acid in aqueous medium with different percentages of Zn have been prepared using K2TeO3 as a source of tellurium. The structure and morphology of these quantum dots were characterized by XRD, TEM, EDX, FTIR and Raman spectroscopy. The results revealed that the ternary CdZnTe quantum dots (QDs) have nearly spherical shape with hexagonal structure. Doping with Zn leads to a pronounced change in relative intensity of the X-ray diffraction peaks. The optical properties were investigated by using UV–Vis absorption and photoluminescence measurements. The UV–Vis showed a gradual increase in the optical band gap of ternary alloy compound of CdZnTe QDs plus a continuous shift of photoluminescence emission with increasing of Zn content. The color distribution analysis showed a gradual change in color with Zn percentage for red, green and blue components. The nanoparticle sizes were determined from optical absorption, XRD, Raman and HRTEM measurements indicating that the prepared binary CdTe and ternary CdZnTe capped with MPA are in a strong confinement regime as an indicative of quantum dots structure.


ZnTe Potassium Tellurite CdTe Nanoparticles Bulk CdZnTe Weight Percentage Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Deanship of Scientific Research (DSR) at King abdulaziz University.


  1. 1.
    W.C. Chan, S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016 (1998)CrossRefGoogle Scholar
  2. 2.
    N.L. Rosi, C.A. Mirkin, Nanostructures in biodiagnostics. Chem Rev. 105, 1547 (2005)CrossRefGoogle Scholar
  3. 3.
    S. Coe, W.-K. Woo, M. Bawendi, V. Bulović, Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800 (2002)CrossRefGoogle Scholar
  4. 4.
    S. Wageh, Light emitting devices based on CdSe nanoparticles capped with mercaptoacetic acid. IEEE J. Quantum Electron. 50, 741 (2014)CrossRefGoogle Scholar
  5. 5.
    M.A. Najeeb, S.M. Abdullah, F. Aziz, M.I. Azmer, S. Wageh, A.A. Al-Ghamdi, Z. Ahmad, A. Supangata, K. Sulaimana, Improvement in the photovoltaic properties of hybrid solar cells by incorporating a QD-composite in the hole transport layer. RSC Adv. 6, 23048 (2016)CrossRefGoogle Scholar
  6. 6.
    V. Klimov, A. Mikhailovsky, S. Xu, A. Malko, J. Hollingsworth, C. Leatherdale, H.-J. Eisler, M. Bawendi, Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314 (2000)CrossRefGoogle Scholar
  7. 7.
    S.F. Wuister, I. Swart, F. van Driel, S.G. Hickey, C. de Mello Donegá, Highly luminescent water-soluble CdTe quantum dots. Nano Lett. 3, 503 (2003)CrossRefGoogle Scholar
  8. 8.
    M. Gilic, N. Romcevic, M. Romcevic, D. Stojanovic, R. Kostic, J. Trajic, W. Dobrowolski, G. Karczewski, R. Galazka, Optical properties of CdTe/ZnTe self-assembled quantum dots: Raman and photoluminescence spectroscopy. J. Alloys Compd. 579, 330 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Wageh, A.A. Al-Ghamdi, F. Yakuphanoglu, Band edge emission of ZnS nanoparticles prepared by excess of thiourea as a source of sulfur. J. Sol-Gel. Sci. Technol. 66, 443 (2013)CrossRefGoogle Scholar
  10. 10.
    Y.-F. Liu, J.-S. Yu, In situ synthesis of highly luminescent glutathione-capped CdTe/ZnS quantum dots with biocompatibility. J Colloid Interface Sci. 351, 1 (2010)CrossRefGoogle Scholar
  11. 11.
    A.B. Greytak, P.M. Allen, W. Liu, J. Zhao, E.R. Young, Z. Popović, B.J. Walker, D.G. Nocera, M.G. Bawendi, Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions. Chem. Sci. 3, 2028 (2012)CrossRefGoogle Scholar
  12. 12.
    Y. Zheng, Z. Yang, J.Y. Ying, Aqueous synthesis of glutathione-capped ZnSe and Zn1−xCdxSe alloyed quantum dots. Adv. Mater. 19, 1475 (2007)CrossRefGoogle Scholar
  13. 13.
    J. Cao, B. Xue, H. Li, D. Deng, Y. Gu, Facile synthesis of high-quality water-soluble N-acetyl-l-cysteine-capped Zn1−xCdxSe/ZnS core/shell quantum dots emitting in the violet–green spectral range. J Colloid Interface Sci. 348, 369 (2010)CrossRefGoogle Scholar
  14. 14.
    S. Wageh, M. H. Badr, Cd1−xZnxS Nanoparticles Stabilized by a Bifunctional Organic Molecule. Physica E, 40, 2810 (2008)CrossRefGoogle Scholar
  15. 15.
    W. Li, J. Liu, K. Sun, H. Dou, K. Tao, Highly fluorescent water soluble CdxZn1−xTe alloyed quantum dots prepared in aqueous solution: one-step synthesis and the alloy effect of Zn. J. Mater. Chem. 20, 2133 (2010)CrossRefGoogle Scholar
  16. 16.
    H. He, M. Feng, J. Hu, C. Chen, J. Wang, X. Wang, H. Xu, J.R. Lu, Designed short RGD peptides for one-pot aqueous synthesis of integrin-binding CdTe and CdZnTe quantum dots. ACS Appl. Mater. Interfaces, 4, 6362 (2012)CrossRefGoogle Scholar
  17. 17.
    S. Wageh, Ternary ZnS:Te nanoparticles capped with 3-mercaptopropionic acid prepared in aqueous media. J. Mater. Sci. 27, 10877 (2016)Google Scholar
  18. 18.
    S.K. Tripathi, R. Kaur, M. Sharma, Synthesis and characterization of TGA-capped CdTe nanoparticles embedded in PVA matrix. Appl. Phys. A 118, 1287 (2015)CrossRefGoogle Scholar
  19. 19.
    M.A. Marcus, L.E. Brus, C. Murray, M.G. Bawendi, A. Prasad, A.P. Alivisatos, EXAFS studies of Cd chalcogenide nanocrystals. Nanostructured Mater. 1, 323 (1992)CrossRefGoogle Scholar
  20. 20.
    J.G. Brennan, T. Siegrist, P.J. Carroll, S.M. Stuczynski, P. Reynders, L.E. Brus, M.L. Steigerwald, Bulk and nanostructure Group II-VI compounds from molecular organometallic precursors. Chem. Mater. 2, 403 (1990)CrossRefGoogle Scholar
  21. 21.
    S. Wageh, A.M.A. Al-Amri, A. Al-Ghamdi, Effect of adding reducing agent on the structure and optical properties of one-pot preparation method of CdTe quantum dots. J. Mater Sci. 27, 8384 (2016)Google Scholar
  22. 22.
    R. Jenkins, R. Snyder, Introduction to X-Ray Powder Diffractometry (Willey, New York, 1996)CrossRefGoogle Scholar
  23. 23.
    S. Wageh, Raman and photoluminescence study of CdSe nanoparticles capped with a bifunctional molecule. Physica E 39, 8 (2007)CrossRefGoogle Scholar
  24. 24.
    S.L. Sobhana, M.V. Devi, T. Sastry, A.B. Mandal, CdS quantum dots for measurement of the size-dependent optical properties of thiol capping. J. Nanopart. Res. 13, 1747 (2011)CrossRefGoogle Scholar
  25. 25.
    S. Wageh, A.A. Higazy, A.S. Hassouna, Optical properties and thermal degradation of CdSe capped with 3-mercaptopropionic acid. J. Mater. Sci. 24, 3049 (2013)Google Scholar
  26. 26.
    S. Wageh, M. Maize, S. Han, A.A. Al-Ghamdi, X. Fang, Effect of solvent and environmental conditions on the structural and optical properties of CdS nanoparticles. RSC Adv. 4, 24110 (2014)CrossRefGoogle Scholar
  27. 27.
    F.O. Silva, M.S. Carvalho, R. Mendonça, W.A. Macedo, K. Balzuweit, P. Reiss, M.A. Schiavon, Effect of surface ligands on the optical properties of aqueous soluble CdTe quantum dots. Nanoscale Res. Lett. 7, 1 (2012)CrossRefGoogle Scholar
  28. 28.
    C.J. Pouchert, The aldrich library of FT-IR Spectra, 2nd edn. (Aldrich chemical Co., Milwaukee, 1997)Google Scholar
  29. 29.
    S. Adachi, Handbook on Physical Properties of Semiconductors, Vol. 3 (II–VI Compound Semiconductors) (Kluwer Academic Publishers, New York, 2004).Google Scholar
  30. 30.
    A. Tanaka, S. Onari, T. Arai, One phonon raman scattering of CdS microcrystals embedded in a germanium dioxide glass matrix. J. Phys. Soc. Jpn. 161, 4222 (1992)CrossRefGoogle Scholar
  31. 31.
    I.H. Campbell, P.M. Fauchet, The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58, 739 (1986)CrossRefGoogle Scholar
  32. 32.
    C. Trallero-Giner, A. Debernardi, M. Cardona, E. Menéndez-Proupín, A.I. Ekimov, Phys. Rev. B 57, 4664 (1998)CrossRefGoogle Scholar
  33. 33.
    J. Camacho, I. Loa, A. Cantarero, K. Syassen, Vibrational properties of ZnTe at high pressures. J. Phys. 14, 739 (2002)Google Scholar
  34. 34.
    D.J. Olego, J.P. Faurie, S. Sivanathan, P.M. Raccah, Optoelectronic properties of Cd1−xZnxTe films grown by molecular beam epitaxy on GaAs substrates. Appl. Phys. Lett. 47, 1172 (1985)CrossRefGoogle Scholar
  35. 35.
    A. Aydinli, A. Compaan, G. Contreras-Puente, A. Mason, Polycrystalline Cd1–xZnxTe thin films on glass by pulsed laser deposition. Solid state commun. 80, 465 (1991)CrossRefGoogle Scholar
  36. 36.
    D.N. Talwar, Z.C. Feng, P. Becla, Impurity-induced phonon disordering in Cd1−xZnxTe ternary alloys. Phys Rev B Condens Matter. 48, 17064 (1993)CrossRefGoogle Scholar
  37. 37.
    B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi, (CdSe)ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463 (1997)CrossRefGoogle Scholar
  38. 38.
    R. Viswanatha, S. Sapra, T. Saha-Dasgupta, D. Sarma, Electronic structure of and quantum size effect in III–V and II–VI semiconducting nanocrystals using a realistic tight binding approach. Phys. Rev. B 72, 045333 (2005)CrossRefGoogle Scholar
  39. 39.
    S.P. Tobin, J.P. Tower, P.W. Norton, A comparison of techniques for nondestructive composition measurements in CdZnTe substrates. J. Electron. Mater. 24, 697 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Asmaa Al-Rasheedi
    • 1
    • 2
  • S. Wageh
    • 1
    • 3
  • Ebtesam Al-Zhrani
    • 1
  • Ahmed Al-Ghamdi
    • 1
  1. 1.Department of Physics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Physics Department, Faculty of Science and ArtsUniversity of Jeddah (UJ)KhulaisSaudi Arabia
  3. 3.Physics and Engineering Mathematics Department, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt

Personalised recommendations