Skip to main content
Log in

Study on metal decorated oxidized multiwalled carbon nanotube (MWCNT) - epoxy adhesive for thermal conductivity applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, an effort has been made to develop a new type of complex conductive adhesive filled with silver decorated multi-walled carbon nanotubes (Ag-MWCNT). MWCNTs have been modified using N,N-dimethyl formamide (DMF) as a reducing agent and silver nanoparticles (Ag-NPs) has been homogeneously decorated against the surface. Fourier transform infra-red spectroscopy (FTIR) and Raman spectroscopy concluded that carboxylic groups were anchored to the surface of nanotubes. X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS) confirmed that Ag-NPs were formed and uniformly deposited onto the surface of carboxylic functionalized MWCNT. Test results indicated an improvement in the thermal conductivity up to 0.88 W/mK, which was about four-fold increase over pristine epoxy. The curing kinetics of Ag-MWCNTs reinforced epoxy adhesive system was also studied using non-isothermal differential scanning calorimetric (DSC) technique. The activation energy obtained by Kissinger’s method was reduced from 57.2 to 54 kJ/mol with an addition of 0.5 wt% of Ag-MWCNT within unmodified epoxy. Lap shear strength of the adhesive containing 0.5 wt% of Ag-MWCNT was higher than the pristine polymer thus confirming reinforcing effect of Ag-MWCNT in conductivity applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Chen, P. Zhao, H. Xie, W. Yu, Compos. Sci. Technol 125, 17 (2016)

    Article  Google Scholar 

  2. F.L. Guan, CX. Gui, HBin Zhang, ZG. Jiang, Y. Jiang, Z.Z. Yu, Composites B 98, 134 (2016)

    Article  Google Scholar 

  3. A. Larmagnac, S. Eggenberger, H. Janossy, J. Voros, Sci. Rep. 4, 7254 (2014)

    Article  Google Scholar 

  4. T.M. Cornsweet, Science 168, 433 (1970)

    Article  Google Scholar 

  5. M.J. Hanus, A.T. Harris, Prog. Mater. Sci. 58, 1056 (2013)

    Article  Google Scholar 

  6. V. Causin, C. Marega, A. Marigo, G. Ferrara, A. Ferraro, Eur. Polym. J. 42, 3153 (2006)

    Article  Google Scholar 

  7. S. Yu, P. Hing, X. Hu, Science 33, 289 (2002)

    Google Scholar 

  8. C.V. Bouanga, T.F. Heid, M.F. Frechette, E. David, Elecrical Insul. Dielectr. Phenom. ,709 (2015) doi:10.1109/CEIDP.2015.7352138

  9. H. Ishida S. Rimdusit, Thermochim. Acta 320, 177 (1998)

    Article  Google Scholar 

  10. E.S. Choi, J.S. Brooks, D.L. Eaton, M.S. Al-Haik, M.Y. Hussaini, H. Garmestani, D. Li, K. Dahmen, J. Appl. Phys 94, 6034 (2003)

    Article  Google Scholar 

  11. E. Fortunati, F.D. Angelo, S. Martino, A. Orlacchio, J.M. Kenny, I. Armentano, Carbon. (2011). doi:10.1016/j.carbon.2011.02.004

    Google Scholar 

  12. Y.X. Fu, Z.X. He, D.C. Mo, S.S. Lu, Int. J. Therm. Sci 86, 276 (2014)

    Article  Google Scholar 

  13. N.K. Mahanta, M.R. Loos, I. Manas Zlocozower, A.R. Abramson, J. Mater. Res. 30, 959 (2015)

    Article  Google Scholar 

  14. T. Huang, X. Zeng, Y. Yao, R. Sun, F. Meng, J. Xu, C. Wong, RSC Adv. (2016) doi:10.1039/C5RA27315C

    Google Scholar 

  15. P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Phys. Rev. Lett. 87, 215502 (2001)

    Article  Google Scholar 

  16. S.Y. Yang, C.C.M. Ma, C.C. Teng, Y.W. Huang, S.H. Liao, Y.L. Huang, H.W. Tien, T.M. Lee, K.C. Chiou, Carbon 43, 592 (2010). doi:10.1016/j.carbon.2009.08.047

    Article  Google Scholar 

  17. F. Xin, L. Li, Composites A 42, 961 (2011)

    Article  Google Scholar 

  18. H. Huang, C. Liu, Y. Wu, S. Fan. Adv. Mater. 17, 1652 (2005)

    Article  Google Scholar 

  19. N. Alexeyeva, J. Kozlova, V. Sammelselg, P. Ritslaid, H. Mandar, K. Tammeveski, Appl. Surf. Sci. 256, 3040 (2010)

    Article  Google Scholar 

  20. Q. Liu, W. Ren, Z.G. Chen, B. Liu, B. Yu, F. Li, H. Cong, H.M. Cheng, Carbon 2, 1722 (2008). doi:10.1016/j.carbon.2008.06.021

    Google Scholar 

  21. F. Ahmadpoor, S.M. Zebarjad, K. Janghorban, Mater. Chem. Phys. 139, 113 (2013)

    Article  Google Scholar 

  22. P.C. Ma, B.Z. Tang, J.K. Kim, Carbon 46,1497 (2008). doi:10.1016/j.carbon.2008.06.048

    Article  Google Scholar 

  23. B. Munkhbayar, M.R. Tanshen, J. Jeoun, H. Chung, H. Jeong, Ceram. Int. 39, 6415 (2013)

    Article  Google Scholar 

  24. R. Gulotty, M. Castellino, P. Jagdale, A. Tagliaferro, A.A. Balandin, ACS Nano 7, 5114 (2013)

  25. M.A. Vargas, H. Vazquez, G. Guthausen, Thermochim. Acta 611, 10 (2015)

    Article  Google Scholar 

  26. J. Hu, J. Shan, J. Zhao, Z. Tong, Thermochim. Acta 632, 56 (2016)

    Article  Google Scholar 

  27. S. Montserrat, J. Malek, Thermochim. Acta 228, 47 (1993)

    Article  Google Scholar 

  28. W. Fang, X. Jun, W. Jing-wen, L. Shu-qin, High Perform. Polym. 24, 730 (2012)

    Article  Google Scholar 

  29. T. Zhou, X. Wang, X. Liu, D. Xiong, Carbon 48, 1171 (2009). doi:10.1016/j.carbon.2008.12.039

    Article  Google Scholar 

  30. S.-Y. Lee, S.J. Park, Bull. Korean Chem. Soc. 31, 1596 (2010)

    Article  Google Scholar 

  31. S. Chen, W. Shen, G. Wu, D. Chen, M. Jiang, Chem. Phys. Lett. 402, 312 (2005)

    Article  Google Scholar 

  32. R. Yudianti, H. Onggo, Y. Saito, T. Iwata, J. Azuma, Open Mater. Sci. J. 5, 242 (2011)

    Article  Google Scholar 

  33. M.A. Atieh, O.Y. Bakather, B. Al-Tawbini, A. A. Bukhari, F.A. Abuilaiwi, M.B. Fettouhi, Bioinorg. Chem. Appl. 2010, (2010)

  34. G. Grassi, A. Scala, D. Iannazzo, A. Piperno, Chem. Commun. 48, 6836 (2012)

    Article  Google Scholar 

  35. S.H. Pisal, N.S. Harale, T.S. Bhat, H. Dshmukh, P.S. Patil, IOSR J. Appl. Chem. 7, 49 (2014)

    Article  Google Scholar 

  36. T.W. Ebbeser, H. Hiura, M.E. Bisher, M.M.J. Treacy, J.L. Shreeve-keyer, R.C. Haushalter, adv. mater. 8, 155 (1996) doi:10.1002/adma.19960080212

    Article  Google Scholar 

  37. Q. Li, Q.Z. Xue, X.L. Gao, Q.B. Zheng, Express. Polym. Lett. 3, 769 (2009)

    Article  Google Scholar 

  38. N. Jahan, A.T. Narteh, M. Hosur, M. Rahman, S. Jeelani, Open J. Compos. Mater. 3, 40 (2013)

    Article  Google Scholar 

  39. L.J. Cui, Y. Bin Wang, W.J. Xiu, W.Y. Wang, L.H. Xu, X.B. Xu, Y. Meng, L.Y. Li, J. Gao, L.T. Chen, H.Z. Geng, Mater. Des. 49, 279 (2013)

    Article  Google Scholar 

  40. S.K. Sahoo, S. Mohanty, S.K. Nayak, Thermochim. Acta. 614, 163 (2015)

    Article  Google Scholar 

  41. M.T. Le S.C. Huang, Materials. 8, 5526 (2015)

    Article  Google Scholar 

  42. F.H. Gojny, K. Schulte, Compos. Sci. Technol. 64, 2303 (2004)

    Article  Google Scholar 

  43. G.V. Ramana, B. Padya, R.N. Kumar, K.V. Prabhakar, P.K. Jain, Indian J. Eng. Mat. Sci. 17, 331 (2010)

  44. P. Jojibabu, M. Jagannatham, P. Haridoss, G.D. Janaki Ram, A.P. Deshpande, S.R. Bakshi, Composites A 82, 53 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Board of Research in Nuclear Sciences-BRNS (Grant No. 39/11/2015-BRNS), Department of Atomic Energy (DAE), Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Panda, B.P., Mohanty, S. et al. Study on metal decorated oxidized multiwalled carbon nanotube (MWCNT) - epoxy adhesive for thermal conductivity applications. J Mater Sci: Mater Electron 28, 8908–8920 (2017). https://doi.org/10.1007/s10854-017-6621-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6621-3

Keywords

Navigation