Study on metal decorated oxidized multiwalled carbon nanotube (MWCNT) - epoxy adhesive for thermal conductivity applications

  • Amit K. Singh
  • Bishnu P. Panda
  • Smita Mohanty
  • Sanjay K. Nayak
  • Manoj K. Gupta


In this work, an effort has been made to develop a new type of complex conductive adhesive filled with silver decorated multi-walled carbon nanotubes (Ag-MWCNT). MWCNTs have been modified using N,N-dimethyl formamide (DMF) as a reducing agent and silver nanoparticles (Ag-NPs) has been homogeneously decorated against the surface. Fourier transform infra-red spectroscopy (FTIR) and Raman spectroscopy concluded that carboxylic groups were anchored to the surface of nanotubes. X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS) confirmed that Ag-NPs were formed and uniformly deposited onto the surface of carboxylic functionalized MWCNT. Test results indicated an improvement in the thermal conductivity up to 0.88 W/mK, which was about four-fold increase over pristine epoxy. The curing kinetics of Ag-MWCNTs reinforced epoxy adhesive system was also studied using non-isothermal differential scanning calorimetric (DSC) technique. The activation energy obtained by Kissinger’s method was reduced from 57.2 to 54 kJ/mol with an addition of 0.5 wt% of Ag-MWCNT within unmodified epoxy. Lap shear strength of the adhesive containing 0.5 wt% of Ag-MWCNT was higher than the pristine polymer thus confirming reinforcing effect of Ag-MWCNT in conductivity applications.


Epoxy Differential Scanning Calorimetric Epoxy Matrix Adhesive System Conductive Filler 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by Board of Research in Nuclear Sciences-BRNS (Grant No. 39/11/2015-BRNS), Department of Atomic Energy (DAE), Govt. of India.


  1. 1.
    L. Chen, P. Zhao, H. Xie, W. Yu, Compos. Sci. Technol 125, 17 (2016)CrossRefGoogle Scholar
  2. 2.
    F.L. Guan, CX. Gui, HBin Zhang, ZG. Jiang, Y. Jiang, Z.Z. Yu, Composites B 98, 134 (2016)CrossRefGoogle Scholar
  3. 3.
    A. Larmagnac, S. Eggenberger, H. Janossy, J. Voros, Sci. Rep. 4, 7254 (2014)CrossRefGoogle Scholar
  4. 4.
    T.M. Cornsweet, Science 168, 433 (1970)CrossRefGoogle Scholar
  5. 5.
    M.J. Hanus, A.T. Harris, Prog. Mater. Sci. 58, 1056 (2013)CrossRefGoogle Scholar
  6. 6.
    V. Causin, C. Marega, A. Marigo, G. Ferrara, A. Ferraro, Eur. Polym. J. 42, 3153 (2006)CrossRefGoogle Scholar
  7. 7.
    S. Yu, P. Hing, X. Hu, Science 33, 289 (2002)Google Scholar
  8. 8.
    C.V. Bouanga, T.F. Heid, M.F. Frechette, E. David, Elecrical Insul. Dielectr. Phenom. ,709 (2015) doi: 10.1109/CEIDP.2015.7352138
  9. 9.
    H. Ishida S. Rimdusit, Thermochim. Acta 320, 177 (1998)CrossRefGoogle Scholar
  10. 10.
    E.S. Choi, J.S. Brooks, D.L. Eaton, M.S. Al-Haik, M.Y. Hussaini, H. Garmestani, D. Li, K. Dahmen, J. Appl. Phys 94, 6034 (2003)CrossRefGoogle Scholar
  11. 11.
    E. Fortunati, F.D. Angelo, S. Martino, A. Orlacchio, J.M. Kenny, I. Armentano, Carbon. (2011). doi: 10.1016/j.carbon.2011.02.004 Google Scholar
  12. 12.
    Y.X. Fu, Z.X. He, D.C. Mo, S.S. Lu, Int. J. Therm. Sci 86, 276 (2014)CrossRefGoogle Scholar
  13. 13.
    N.K. Mahanta, M.R. Loos, I. Manas Zlocozower, A.R. Abramson, J. Mater. Res. 30, 959 (2015)CrossRefGoogle Scholar
  14. 14.
    T. Huang, X. Zeng, Y. Yao, R. Sun, F. Meng, J. Xu, C. Wong, RSC Adv. (2016) doi: 10.1039/C5RA27315C Google Scholar
  15. 15.
    P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Phys. Rev. Lett. 87, 215502 (2001)CrossRefGoogle Scholar
  16. 16.
    S.Y. Yang, C.C.M. Ma, C.C. Teng, Y.W. Huang, S.H. Liao, Y.L. Huang, H.W. Tien, T.M. Lee, K.C. Chiou, Carbon 43, 592 (2010). doi: 10.1016/j.carbon.2009.08.047 CrossRefGoogle Scholar
  17. 17.
    F. Xin, L. Li, Composites A 42, 961 (2011)CrossRefGoogle Scholar
  18. 18.
    H. Huang, C. Liu, Y. Wu, S. Fan. Adv. Mater. 17, 1652 (2005)CrossRefGoogle Scholar
  19. 19.
    N. Alexeyeva, J. Kozlova, V. Sammelselg, P. Ritslaid, H. Mandar, K. Tammeveski, Appl. Surf. Sci. 256, 3040 (2010)CrossRefGoogle Scholar
  20. 20.
    Q. Liu, W. Ren, Z.G. Chen, B. Liu, B. Yu, F. Li, H. Cong, H.M. Cheng, Carbon 2, 1722 (2008). doi: 10.1016/j.carbon.2008.06.021 Google Scholar
  21. 21.
    F. Ahmadpoor, S.M. Zebarjad, K. Janghorban, Mater. Chem. Phys. 139, 113 (2013)CrossRefGoogle Scholar
  22. 22.
    P.C. Ma, B.Z. Tang, J.K. Kim, Carbon 46,1497 (2008). doi: 10.1016/j.carbon.2008.06.048 CrossRefGoogle Scholar
  23. 23.
    B. Munkhbayar, M.R. Tanshen, J. Jeoun, H. Chung, H. Jeong, Ceram. Int. 39, 6415 (2013)CrossRefGoogle Scholar
  24. 24.
    R. Gulotty, M. Castellino, P. Jagdale, A. Tagliaferro, A.A. Balandin, ACS Nano 7, 5114 (2013)Google Scholar
  25. 25.
    M.A. Vargas, H. Vazquez, G. Guthausen, Thermochim. Acta 611, 10 (2015)CrossRefGoogle Scholar
  26. 26.
    J. Hu, J. Shan, J. Zhao, Z. Tong, Thermochim. Acta 632, 56 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Montserrat, J. Malek, Thermochim. Acta 228, 47 (1993)CrossRefGoogle Scholar
  28. 28.
    W. Fang, X. Jun, W. Jing-wen, L. Shu-qin, High Perform. Polym. 24, 730 (2012)CrossRefGoogle Scholar
  29. 29.
    T. Zhou, X. Wang, X. Liu, D. Xiong, Carbon 48, 1171 (2009). doi: 10.1016/j.carbon.2008.12.039 CrossRefGoogle Scholar
  30. 30.
    S.-Y. Lee, S.J. Park, Bull. Korean Chem. Soc. 31, 1596 (2010)CrossRefGoogle Scholar
  31. 31.
    S. Chen, W. Shen, G. Wu, D. Chen, M. Jiang, Chem. Phys. Lett. 402, 312 (2005)CrossRefGoogle Scholar
  32. 32.
    R. Yudianti, H. Onggo, Y. Saito, T. Iwata, J. Azuma, Open Mater. Sci. J. 5, 242 (2011)CrossRefGoogle Scholar
  33. 33.
    M.A. Atieh, O.Y. Bakather, B. Al-Tawbini, A. A. Bukhari, F.A. Abuilaiwi, M.B. Fettouhi, Bioinorg. Chem. Appl. 2010, (2010)Google Scholar
  34. 34.
    G. Grassi, A. Scala, D. Iannazzo, A. Piperno, Chem. Commun. 48, 6836 (2012)CrossRefGoogle Scholar
  35. 35.
    S.H. Pisal, N.S. Harale, T.S. Bhat, H. Dshmukh, P.S. Patil, IOSR J. Appl. Chem. 7, 49 (2014)CrossRefGoogle Scholar
  36. 36.
    T.W. Ebbeser, H. Hiura, M.E. Bisher, M.M.J. Treacy, J.L. Shreeve-keyer, R.C. Haushalter, adv. mater. 8, 155 (1996) doi: 10.1002/adma.19960080212 CrossRefGoogle Scholar
  37. 37.
    Q. Li, Q.Z. Xue, X.L. Gao, Q.B. Zheng, Express. Polym. Lett. 3, 769 (2009)CrossRefGoogle Scholar
  38. 38.
    N. Jahan, A.T. Narteh, M. Hosur, M. Rahman, S. Jeelani, Open J. Compos. Mater. 3, 40 (2013)CrossRefGoogle Scholar
  39. 39.
    L.J. Cui, Y. Bin Wang, W.J. Xiu, W.Y. Wang, L.H. Xu, X.B. Xu, Y. Meng, L.Y. Li, J. Gao, L.T. Chen, H.Z. Geng, Mater. Des. 49, 279 (2013)CrossRefGoogle Scholar
  40. 40.
    S.K. Sahoo, S. Mohanty, S.K. Nayak, Thermochim. Acta. 614, 163 (2015)CrossRefGoogle Scholar
  41. 41.
    M.T. Le S.C. Huang, Materials. 8, 5526 (2015)CrossRefGoogle Scholar
  42. 42.
    F.H. Gojny, K. Schulte, Compos. Sci. Technol. 64, 2303 (2004)CrossRefGoogle Scholar
  43. 43.
    G.V. Ramana, B. Padya, R.N. Kumar, K.V. Prabhakar, P.K. Jain, Indian J. Eng. Mat. Sci. 17, 331 (2010)Google Scholar
  44. 44.
    P. Jojibabu, M. Jagannatham, P. Haridoss, G.D. Janaki Ram, A.P. Deshpande, S.R. Bakshi, Composites A 82, 53 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Amit K. Singh
    • 1
    • 2
  • Bishnu P. Panda
    • 1
  • Smita Mohanty
    • 1
    • 2
  • Sanjay K. Nayak
    • 1
    • 2
  • Manoj K. Gupta
    • 3
  1. 1.Laboratory for Advanced Research in Polymeric Materials (LARPM)Central Institute of Plastics Engineering and Technology (CIPET)BhubaneswarIndia
  2. 2.Central Institute of Plastics Engineering and Technology (CIPET)ChennaiIndia
  3. 3.Institute for Plasma ResearchGandhinagarIndia

Personalised recommendations