Analysis of electrical characteristics and conduction mechanisms in the Al/(%7 Zn-doped PVA)/p-Si (MPS) structure at room temperature

  • E. E. Tanrıkulu
  • S. Demirezen
  • Ş. Altındal
  • İ. Uslu


The electrical properties and current-conduction/transport mechanism of Al/(%7 Zn-doped PVA)/p-Si (MPS) structure was investigated by current–voltage (I-V), capacitance–voltage (C-V) and conductance-voltage (G/ω-V) measurements at room temperature. The energy dependent profile of surface states (Nss) was obtained by taking into account voltage dependent effective barrier height (Φe), ideality factor (n) and series resistance (Rs) of the structure. Voltage dependent profile of resistivity (Ri) and some main electrical parameters such as reverse saturation current (Io), ideality factor (n) and zero-bias barrier height (ΦBo) were also evaluated from the forward bias I-V data. Experimental results reveal that the fabricated MPS structure has a higher rectification ratio with low reverse leakage current. The double logarithmic I-V plot was drawn and it shows a power-law behavior of the current (I ∝ V m). The forward and reverse bias C-V and G/ω-V measurements were carried out at enough high frequency (1 MHz) and then to eliminate of the Rs the measured C-V and G/ω-V plots were corrected. The C-V and G/ω-V plots exhibit inductive behavior at accumulation region due to the effect of Nss and Rs. The other some electrical parameters such as concentration of acceptor atoms (NA) and barrier height (ΦB) were also obtained from the slope and intercept of reverse bias C− 2 vs V plot. Further, both the forward and reverse bias conduction mechanisms of the MPS structure are also discussed compare with the literature.


Barrier Height Interfacial Layer Reverse Bias Forward Bias Negative Capacitance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    V. Rejagopal Reddy, Thin Solid Films 556, 300 (2014)CrossRefGoogle Scholar
  2. 2.
    V. Rejagopal Reddy, V. Manjunath, V. Janardhanam, Y. H. Kil, C.J. Choi, J. Electron. Mater. 43, 3499 (2014).CrossRefGoogle Scholar
  3. 3.
    Ş. Altındal, H. Uslu, J. Appl. Phys 109, 074503 (2011)CrossRefGoogle Scholar
  4. 4.
    S. Alialy, Ş. Altındal, E.E. Tanrıkulu, D.E. Yıldız, J. Appl. Phys 116, 083709 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Gökçen, T. Tunç, Ş. Altındal, İ. Uslu, Curr. Appl. Phys 12, 525 (2012)CrossRefGoogle Scholar
  6. 6.
    M. K. Hudait, S.B. Krupandhi, Solid State Electron. 44, 1089 (2000)CrossRefGoogle Scholar
  7. 7.
    İ. Dökme, T. Tunç, İ. Uslu, Ş. Altındal, Synth. Met. 161, 474 (2011)CrossRefGoogle Scholar
  8. 8.
    İ. Taşçıoğlu, U. Aydemir, Ş. Altındal, J. Appl. Phys. 108, 064506 (2010)CrossRefGoogle Scholar
  9. 9.
    S. M. Sze, Physics of Semiconductor Devices, 2 (Willey, New York, 1981).Google Scholar
  10. 10.
    E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2 (Clarendon Press, Oxford, 1988)Google Scholar
  11. 11.
    H.C. Card, E.H. Rhoderick, J. Phys. D 3, 1589 (1971)CrossRefGoogle Scholar
  12. 12.
    Ö. Vural, Y. Şafak, A. Türüt, Ş. Altındal, J. Alloys Compd. 513, 107 (2012)CrossRefGoogle Scholar
  13. 13.
    A. Kaya, E. Marıl, Ş. Altındal, İ. Uslu, Microelectron. Eng. 149, 166 (2016)CrossRefGoogle Scholar
  14. 14.
    A. Kaya, S. Alialy, S. Demirezen, M. Balbaşı, S. A. Yerişkin, A. Aytemur, Ceram. Int. 42, 3322 (2016)CrossRefGoogle Scholar
  15. 15.
    M. K. Hudait, S. B. Krupandhi, Mater. Sci. Eng. B87, 141 (2001)CrossRefGoogle Scholar
  16. 16.
    V. Rejagopal Reddy, Indian, J. Phys 89, 463 (2015)CrossRefGoogle Scholar
  17. 17.
    K. Moraki, S. Bengi, S. Zeyrek, M.M. Bülbül, Ş. Altındal, J. Mater. Sci: Mater. Electron, DOI: 10.1007/s10854-016-6011-2
  18. 18.
    H. G. Çetinkaya, S. Alialy, Ş. Altındal, A. Kaya, İ. Uslu, J. Mater. Sci:Mater Electron, 26, 3186 (2015)Google Scholar
  19. 19.
    J.-J. Zeng, Y.-J. Lin Appl. Phys. Lett. 104, 133506 (2014)CrossRefGoogle Scholar
  20. 20.
    H. Norde, J. Appl. Phys 50, 5052 (1979)CrossRefGoogle Scholar
  21. 21.
    K.E. Bohlin, J. Appl. Phys 60, 1223 (1986)CrossRefGoogle Scholar
  22. 22.
    S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)CrossRefGoogle Scholar
  23. 23.
    Ç. Bilkan, S. Zeyrek, S. E. Şan, Ş. Altındal, Mater. Sci. Semicond. Proces. 32, 137 (2015)CrossRefGoogle Scholar
  24. 24.
    E.H. Nicollian, J.R. Brews, MOS Physics and Technology. (Wiley, New York, 1982)Google Scholar
  25. 25.
    E. Arslan, Y. Şafak, Ş. Altındal, Ö. Kelekçi, E. Özbay. J. Non-Cryst. Solids 356, 1006 (2010)CrossRefGoogle Scholar
  26. 26.
    B.K. Jones, J. Santana, M. McPherson, Solid State. Commun. 107, 47 (1988)CrossRefGoogle Scholar
  27. 27.
    X. Wu, E.S. Yang, H.L. Evans, J. Appl. Phys. 68 (6) (1990)Google Scholar
  28. 28.
    M. Ershov, H. C. Liu, L. Li, M. Buchanan, Z. R. Wasilewski, A. K. Jonscher, IEEE Trans. Electron. Dev., 45, 2196 (1998)CrossRefGoogle Scholar
  29. 29.
    C.Y. Zhu, L.F. Feng, C.D. Wang, H.X. Cong, G.Y. Zhang, Z.J. Yang, Z.Z. Chen, Solid State Electron 53, 324 (2009)CrossRefGoogle Scholar
  30. 30.
    K.S.A. Butcher, T.L. Tansley, D. Alexiev, Solid-State Electron. 39, 333 (1996)CrossRefGoogle Scholar
  31. 31.
    X.L. Huang, Solid-State Electron. 41, 845 (1997)CrossRefGoogle Scholar
  32. 32.
    C.H. Champness, W.R. Clark, Appl. Phys. Rev. Lett. 56, 1104 (1990)CrossRefGoogle Scholar
  33. 33.
    M.M. Bülbül, S. Bengi, İ. Dökme, Ş. Altındal, T. Tunç, J. Appl. Phys 108, 034517 (2010)CrossRefGoogle Scholar
  34. 34.
    Ş. Altındal, S. Karadeniz, N. Tuğluoğlu, A. Tataroğlu, Solid-State Electron. 47, 1847 (2003)CrossRefGoogle Scholar
  35. 35.
    A. Bengi, H. Uslu, T. Asar, Ş. Altındal, S.Ş. Çetin, T.S. Mammadov, S. Özçelik. J. Alloys Compd. 509, 2897 (2011)CrossRefGoogle Scholar
  36. 36.
    G. Ersöz, İ. Yücedağ, Y. Azizian-Kalandaragh, İ. Orak, Ş. Altındal. IEEE Trans. Electron. Dev. 63, 2948 (2016)Google Scholar
  37. 37.
    S. Demirezen, A. Kaya, Ö. Vural, Ş. Altındal, Mater. Sci. Semicond. Process. 33, 140 (2015)CrossRefGoogle Scholar
  38. 38.
    S. Demirezen, E. Özavcı, Ş. Altındal, Mater. Sci. Semicond. Process. 23, 1 (2014)CrossRefGoogle Scholar
  39. 39.
    D. Korucu, A. Türüt, Ş. Altındal, Curr. Appl. Phys. 13, 1101 (2013)CrossRefGoogle Scholar
  40. 40.
    T. Tunç, Ş. Altındal, İ. Dökme, H. Uslu, J. Electron. Mater. 40, 157 (2011)CrossRefGoogle Scholar
  41. 41.
    H. Uslu, Ş. Altındal, U. Aydemir, İ. Dökme, İ. M. Afandiyeva, J. Alloys Compd. 503, 96 (2010)CrossRefGoogle Scholar
  42. 42.
    O. Çiçek, H. Uslu Tecimer, S.O. Tan, H. Tecimer, Ş. Altındal, İ. Uslu. Compos. Part B 98, 260 (2016)CrossRefGoogle Scholar
  43. 43.
    A. Demir, İ. Yücedağ, G. Ersöz, Ş. Altındal, N. Baraz, M. Kandaz, J. Nanoelectron. Optoelectron. 11, 620 (2016)CrossRefGoogle Scholar
  44. 44.
    Ç. Bilkan, Y.A. Kalandaragh, Ş. Altındal, R. S. Havigh, Phys. B 500, 154 (2016)CrossRefGoogle Scholar
  45. 45.
    V. Rejagopal Reddy, M. Siva Pratap Reddy, A. Ashok Kumar, C.-J. Choi. Thin Solid Films 520, 5715 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • E. E. Tanrıkulu
    • 1
  • S. Demirezen
    • 2
  • Ş. Altındal
    • 1
  • İ. Uslu
    • 3
  1. 1.Department of Physics, Faculty of SciencesGazi UniversityAnkaraTurkey
  2. 2.Department of Computer Aided Design and Animation, Vocational School of DesignAmasya UniversityAmasyaTurkey
  3. 3.Department of Chemistry, Chemistry Education DepartmentGazi UniversityAnkaraTurkey

Personalised recommendations