Optical properties of novel Sm3+ activated distrontium magnesium disilicate phosphor

  • Kanchan Mondal
  • J. Manam


The Sm3+ doped Sr2MgSi2O7 phosphors were prepared via solid state reaction method. The prepared phosphors have characterised with X-ray diffraction (XRD), Field emission electron scanning microscope (FESEM), Diffuse reflectance (DR) spectroscopy, Photoluminescence (PL) together with decay curve. The XRD pattern shows the phase purity of the phosphors. In FESEM study the particle shows spherical morphology and consists of particles with irregular and different size distribution. The band gaps of the samples were found to be increased trend corresponding to increase the Sm3+ dopant concentration. The strongest excitation and emission peaks were observed at 402 nm (6H5/24F7/2) and 603 nm (4G5/26H7/2) respectively. The Sm3+ doped Sr2MgSi2O7 shows yellowish color emission with the excitation wavelength of 402 nm. The prepared phosphor shows excellent thermal stability. The critical concentration of Sm3+ ions in Sr2MgSi2O7 lattice was found to be at 3 mol%. The critical energy transfer distance (Rc) of the prepared sample was found to be 17.36 Å. The concentration quenching procedure of the emission in the prepared samples for the transition 4G5/26H7/2 was multipole–multipole interaction.


Luminescence Decay Solid State Lighting Luminescence Decay Curve Multipolar Interaction Prepared Phosphor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors (Mondal) thankfully acknowledges the IIT (ISM) research fellowship funding by Govt. of India. The authors express their conscientious gratefulness to Dr. S.K. Sharma Department of Applied Physics, IIT (ISM) Dhanbad for PL measurements and Central Research Facility of IIT (ISM) Dhanbad for providing facilities for FESEM and UV–Vis studies.


  1. 1.
    X. Qiguang, X. Denghui, J. Sun, Preparation and luminescence properties of orange–red Ba3Y(PO4)3:Sm3+ phosphors. Opt. Mater. 210, 42 (2015)Google Scholar
  2. 2.
    Y.H. Liu, L. Chen, X.F. Zhou, R.H. Liu, W.D. Zhuang, Structure, luminescence and thermal quenching properties of Eu doped Sr2–xBaxSi5N8 red phosphors. J. Solid State Chem. 145, 246 (2017)Google Scholar
  3. 3.
    C. Guo, H.K. Yang, J.H. Jeong, Preparation and luminescent properties of phosphor MGd2(MoO4)4:Eu3+ (M = Ca, Sr and Ba). J. Lumin. 1390, 130 (2010)Google Scholar
  4. 4.
    P. Yang, C. Li, W. Wang, Z. Quan, S. Gai, J. Lin, Uniform AMoO4:Ln (A = Sr2+, Br2+; Ln = Eu3+, Tb3+) submicron particles: solvothermal synthesis and luminescence properties. J. Solid State Chem. 2510, 182 (2009)Google Scholar
  5. 5.
    M. Galceran, M.C. Pujol, P. Gluchowski, W. Sterk, J.J. Carvajal, X. Mateos, M. Aguilo, F. Diaz, Synthesis, structural and optical characterization of Eu:KYb(WO4)2 nanocrystals: a promising red phosphor. Opt. Mater. 1493, 32 (2010)Google Scholar
  6. 6.
    X.P. Chen, F. Xiao, S. Ye, X.Y. Huang, G.P. Dong, Q.Y. Zhang, ZnWO4:Eu3+ nanorods: a potential tunable white light emitting phosphors. J. Alloys Compd. 1355, 509 (2011)Google Scholar
  7. 7.
    E. Cavalli, F. Angiuli, A. Belletti, P. Bountinaud, Luminescence spectroscopy of YVO4:Ln3+, Bi3+ (Ln3+ = Eu3+, Sm3+, Dy3+) phosphors. Opt. Mater. 1642, 36 (2014)Google Scholar
  8. 8.
    P. Biswas, V. Kumar, G. Agarwal, O. M. Ntwaeaborwa, H. C. Swart, NaSrVO4:Sm3+—an n-UV convertible phosphor to fill the quantum efficiency gap for LED application. Ceram. Int. 2317, 42 (2016).Google Scholar
  9. 9.
    X. Teng, J. Li, G. Duan, Z. Liu, Development Tb3+ activated gadolinium aluminate garnet (Gd3Al5O12) as highly efficient green—emitting phosphors. J. Lumin. 165, 179 (2016)Google Scholar
  10. 10.
    J. Zhu, Z. Xia, Q. Liu, Synthesis and energy transfer studies of LaMgAl11O19:Cr3+, Nd3+ phosphors. Mater. Res. Bull. 9, 74 (2016)Google Scholar
  11. 11.
    Z. Yongquing, Y. Zhijing, L. Yahong, S. Yipei, J. Qingqing, Properties of red-emitting phosphors Sr2MgSi2O7:Eu3+ prepared by gel-combustion method assisted by microwave. J. Rare Earth 114, 30 (2012)Google Scholar
  12. 12.
    I. P. Sahu, D. P. Bisen, N. Brahme, L. Wanjari, R. Tamrakar, Luminescence properties of Sr2MgSi2O7:Eu2+, Ce3+ phosphor by solid state reaction method. Phys. Procedia 80, 76 (2015).Google Scholar
  13. 13.
    Y. Gong, Y. Wang, Z. Jiang, X. Xu, Y. Li, Luminescent properties of long lasting phosphor Ca2MgSi2O7:Eu2+. Mater. Res. Bull. 44, 1916 (2009)CrossRefGoogle Scholar
  14. 14.
    M.A. Tshabalala, H.C. Swart, F.B. Dejene, E. Coetsee, O.M. Ntwaeaborwa, Structure, surface analysis, photoluminescent properties and decay characteristics of Tb3+-Eu3+ co-activated Sr2MgSi2O7 phosphor. Appl. Surf. Sci 409, 360 (2016)Google Scholar
  15. 15.
    P. Wen, N. Guiling, L. Yuan, Y. Xuefeng, Sol-gel processed Ce3+, Tb3+ codoped white emitting phosphors in Sr2Al2SiO7. J. Rare Earth 207, 26 (2008)Google Scholar
  16. 16.
    Y. Hao, Y.H. Wang, Synthesis and photoluminescence of new phosphors M2(Mg, Zn)Si2O7:Mn2+ (M = Ca, Sr, Ba). Mater. Res. Bull. 2219, 42 (2007)Google Scholar
  17. 17.
    D. He, Y. Shi, D. Zhou, T. Hou, Photoluminescence properties of M2MgSi2O7:Re2+(M ¼ Ba, Sr, Ca). J. Lumin. 158, 122–123 (2007)Google Scholar
  18. 18.
    B. Liu, L. Kong, C. Shi, White-light long-lasting phosphor Sr2MgSi2O7:Dy3+. J. Lumin. 121, 122–123 (2007)Google Scholar
  19. 19.
    U.B. Gokhe, S.K. Omanwar, Synthesis and Photoluminescence properties of Sm3+ doped Sr2MgSi2O7, IOSR. J. Appl. Phys. 13, 7 (2015)Google Scholar
  20. 20.
    X. Liu, J. Lin, LaGaO3:A (A = Sm3+ and/or Tb3+) as promising phosphors for field emission displays. J. Mater. Chem. 221, 18 (2008)Google Scholar
  21. 21.
    M.B. Reddy, C.N. Raju, S. Sailaja, B.V. Rao, B.S. Reddy. J. Lumin. 2503, 131 (2011)Google Scholar
  22. 22.
    Z.H. Ju, S.H. Zhang, X.P. Gao, X.L. Tang, W.S. Liu, Reddish orange long afterglow phosphor Ca2SnO4:Sm3+prepared by sol–gel method. J. Alloys Compd. 8082, 509 (2011)Google Scholar
  23. 23.
    F. Yang, Z. Yang, Q. Yu, Y. Liu, X. Li, F. Lu, Sm3+-doped Ba3Bi(PO4)3 orange reddish emitting phosphor. Spectrochim. Acta Part A. 105, 626 (2013).CrossRefGoogle Scholar
  24. 24.
    G. Okada et al., Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses. Appl. Phys. Lett. 121105, 99 (2011)Google Scholar
  25. 25.
    C. Koughia et al., Samarium-doped fluorochlorozirconate glass–ceramics as red-emitting X-ray phosphors. J. Am. Ceram. Soc. 543, 94 (2011)Google Scholar
  26. 26.
    A. Edgar et al., Optical properties of divalent samarium- doped fluorochlorozirconate glasses and glass ceramics. Opt. Mater. 1459, 31 (2009)Google Scholar
  27. 27.
    E. Nakazawa,in Excitation energy transfer and cooperative optical phenomena, ed. by S. Shionoya, W.M. Yen, H. Yamamoto, Phosphor Handbook, 2nd edn. (CRC Press, New York, 2006), pp. 99–100Google Scholar
  28. 28.
    K. Mondal, P. Kumari, J. Manam, Influence of doping and annealing temperature on the structural and optical properties of Mg2SiO4:Eu3 synthesized by combustion method. Curr. Appl. Phys. 707, 16 (2016)Google Scholar
  29. 29.
    P.K. Baitha, J. Manam, Structural and spectroscopic diagnosis of ZnO/SnO2 nanocomposite influenced by Eu3+. J. Rare Earth 805, 33 (2015)Google Scholar
  30. 30.
    A.E. Morales, E.S. Mora, U. Pal, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev. Mex. Fis. 18, 53 (2007).Google Scholar
  31. 31.
    J. Tauc and A. Menth, State in gap, J. Non-Cryst. Solids 569, 8 (1972).Google Scholar
  32. 32.
    P. Kumari, J. Manam, Enhanced red emission on co-doping of divalent ions (M2+ = Ca2+, Sr2+, Ba2+) in YVO4:Eu3+ phosphor and spectroscopic analysis for its application in display devices. Spectrochim. Acta A. 109, 152 (2016).Google Scholar
  33. 33.
    N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, B. Rudraswamya, C. Shivakumara, R.P.S. Chakradhar, Effect of Li+-ion on enhancement of photoluminescence in Gd2O3:Eu3+ nanophosphors prepared by combustion technique. J. Alloys Compd. 2368, 509 (2011)Google Scholar
  34. 34.
    Jianfeng Sun, D. Ding, Jiayue Sun, Synthesis and photoluminescence properties of a novel reddish orange-emitting Sm3+-doped strontium borosilicate phosphor. Opt. Mater. 188, 58 (2016)Google Scholar
  35. 35.
    G.S.R. Raju, S. Buddhudu, Emission analysis of Sm3+ and Dy3+:MgLaLiSi2O7 powder phosphors. Spectrochim. Acta Part A. 601, 70 (2008)Google Scholar
  36. 36.
    V. Singh, S. Watanabe, T.K.G. Rao, J.F.D. Chubaci, H.-Y. Kwak, Luminescence and defect centres in MgSrAl10O17:Sm3+ phosphor. J. Non-Cryst. Solids 1185, 356 (2010)Google Scholar
  37. 37.
    G. Blasse, Energy transfer in oxidic phosphors. Phys. Lett. A. 444, 28 (1968)Google Scholar
  38. 38.
    Som et al, CaTiO3:Eu3+ a potential red long lasting phosphor: energy migration and characterization of trap level distribution. J. Alloys Compd. 1068, 622 (2015)Google Scholar
  39. 39.
    P. Kumari, J. Manam, Influence of Dy3+ ions doping on structural and luminescent properties of GdVO4. J. Mater. Sci. 9437, 27 (2016)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Applied PhysicsIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations