Effect of substrate temperature on electrical properties of (Al/p-Cu3SbS3 /Mo) Schottky diodes grown by vacuum thermal evaporation

  • K. Nefzi
  • A. Rabhi
  • M. Kanzari


This study highlights some physical properties of Schottky diodes (Al/p-Cu3SbS3/Mo) fabricated by simple deposition of Aluminum on the front side of the Cu3SbS3 thin films. p-Cu3SbS3 were grown by by thermal evaporation method onto heated and unheated Mo substrates. The current–voltage (I–V) characteristics show the interaction between the Aluminum and p-Cu3SbS3 give a Schottky contact. The saturation currents, the ideality factors and series resistances were extracted from the experimental data. Moreover, the capacitance–voltage (C–V) characteristics reveal the values of the barrier height of the heterostructures. The Schottky diode at a substrate temperature of 150 °C showed the strongest barrier height (0.59 eV) and the lowest leakage current (1.08 × \({10^{ - 6}}{\text{A}}\)). In order to evaluate the conduction processes of the samples, the impedance spectroscopy technique were used. To model these results, equivalent electrical circuits were used. Finally, from the analysis of the data, we found a decrease of the entire serial resistances Rs, the parallel resistances Rp and the capacitances Cp when the increase of the temperature.


Substrate Temperature Barrier Height Series Resistance Ideality Factor Schottky Diode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D.S. Reddy, M.B. Reddy, N.N.K. Reddy, V.R. Reddy, Journal of Modern Physics 2, 113 (2011)CrossRefGoogle Scholar
  2. 2.
    C.W. Wilmsen, Physics and Chemistry of III–V compound semiconductor interfaces, (Lenum Press, New York, 1985)CrossRefGoogle Scholar
  3. 3.
    R.T. Tung, Mater. Sci. Eng R35(1) 138 (2001)Google Scholar
  4. 4.
    A.A.M. Farag, I.S. Yahia, M. Fadel, Int. J. Hydrogen Energy 34, 4906 (2009)CrossRefGoogle Scholar
  5. 5.
    K. Ramasamy, H. Sims, W.H. Butler, A. Gupta, Chem. Mater. 26(9), 2891 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Ikeda, S. Sogawa, Y. Tokai, W. Septina, T. Harada, M. Matsumura, R. Soc. Chem. 4, 40969 (2014)Google Scholar
  7. 7.
    Z. Hao, D. Zeng, L. Chen, F. Huang, Mater. Lett. 122, 338 (2014)CrossRefGoogle Scholar
  8. 8.
    Y. Rodrıiguez-Lazcano, M.T.S. Nair, P.K. Nair, Mod. Phys. Lett. B15, 667 (2001)CrossRefGoogle Scholar
  9. 9.
    P. Maiello, G. Zoppi, I. Forbes, R. Miles, N. Pearsall, Sol. Energy Mater. Sol. Cells 113, 186 (2013)CrossRefGoogle Scholar
  10. 10.
    K. Nefzi, A. Rabhi, M. Kanzari, J. Mater. Sci. (2015). doi: 10.1007/s10854-015-3969-0 Google Scholar
  11. 11.
    M. Jang, Y. Kim, M. Jun, S. Lee, J. Semicond. Technol. Sci. 5, 69 (2005)Google Scholar
  12. 12.
    D.K. Schroder, Semiconductor material and device characterization, Chap. 3, 3rd edn. (IEEE Press, Piscataway, NJ, 2006)Google Scholar
  13. 13.
    S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)CrossRefGoogle Scholar
  14. 14.
    E.H. Rhoderick, R.H. Williams, (Clarendon Press, 1988), p. 252Google Scholar
  15. 15.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (John Wiley and Sons, New York), 1981Google Scholar
  16. 16.
    P. Agarwal, M.E. Orazem, J. Electrochem. Soc 142, 4159 (1995)CrossRefGoogle Scholar
  17. 17.
    B. Roy, S. Chakrabarty, O. Mondal, M. Pal, A. Dutta, Mater. Charact. 70, 1 (2012)CrossRefGoogle Scholar
  18. 18.
    R.M. Hill, A.K. Jonscher, J. Non-Cryst Solids 32, 53 (1979)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Université de Tunis El Manar (UTM), Ecole Nationale d’Ingénieurs de Tunis Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs (LPMS)TunisTunisia
  2. 2.Département de Physique, Faculté des Sciences de BizerteBizerteTunisia
  3. 3.Université de Tunis, IPEITunis MontfleuryTunisTunisia

Personalised recommendations