Effect of neodymium doping on structural, electrical and magnetic properties of multiferroic GdMn2O5

  • Deepa Singh
  • Vandana Gupta
  • Ranjan K. Singh
  • K. K. Bamzai


Neodymium doped gadolinium manganate with general composition (Nd0.1Gd0.9Mn2O5) was prepared by co-precipitation method. Microstructural and compositional analysis has been carried out by X-ray diffraction and scanning electron microscopy. The optical studies have been carried out by Raman and FTIR. The electrical properties studied include dielectric constant, dielectric loss, ac conductivity and activation energy in the temperature range 20–400  °C. The shift in the dielectric peak towards higher temperature side with increasing frequency indicates frequency dispersion and suggesting the relaxational behaviour of the material. Frequency dependence of ac conductivity obeys the universal power law. The value of activation energy depends on increase in frequency. The room temperature magnetic behaviour has been analyzed from the magnetic field dependent magnetization curve. The grown material exhibits the paramagnetic behavior at room temperature.


Dielectric Constant Dielectric Loss Neodymium Dielectric Anomaly High Temperature Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors, Dr. Deepa Singh is thankful to Department of Science & Technology, Government of India for awarding Women Scientist vide No.: SR/WOS-A/PS-59/2012 (G). The authors would like to acknowledge Sophisticated Test and Instrumentation Centre (STIC) Cochin University for providing XRD and SEM facilities. The authors would also like to acknowledge SAIIF- IIT Madras for providing VSM facility.


  1. 1.
    CNR Rao, A. Sundaresan, R. Saha, J Phys Chem Lett 3, 2237 (2012)CrossRefGoogle Scholar
  2. 2.
    T. Han, W. Hsu, W. Lee, Nanoscale Res Lett 6, 201 (2011)CrossRefGoogle Scholar
  3. 3.
    S. Cheong, W & Mostovoy M. Nat Matter 6, 13 (2007)CrossRefGoogle Scholar
  4. 4.
    T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55 (2003)CrossRefGoogle Scholar
  5. 5.
    P.G. Radaelli, & Chapon L C. J. Phys. Condens. Matter 20, 434213 (2008)CrossRefGoogle Scholar
  6. 6.
    Y. Noda, H. Kimura, M. Fukunago, S. Kobayashi, I. Kagomiya, K. Kohn, J. Phys. Condens. Matter 20, 434206 (2008)CrossRefGoogle Scholar
  7. 7.
    J.A. Alonso, MRT Casaos, M.J. Martinez-Lope, I. Rasines, J Solid State Chem 129, 105 (1997)CrossRefGoogle Scholar
  8. 8.
    C.L. Lu, J. Fan, H.M. Liu, K.F. Xia K, Wang, Wang P W, He Q Y, Yu D P & Liu J M. Appl Phys A 96, 991 (2009)Google Scholar
  9. 9.
    N. Poudel, K.C. Liang, Y.Q. Wang, Y.Y. Sun, B. Lorenz, F. Ye, J.A. Fernandez-Baca, C.W. Chu, Phys. Rev. B 89, 054414 (2014)CrossRefGoogle Scholar
  10. 10.
    I. Kagomiya, K. Kohn, T. Uchiyama, Ferroelectrics 280, 297 (2002)CrossRefGoogle Scholar
  11. 11.
    G. Giovanneti, & Van den Brink J. Phys. Rev. Lett. 100, 227603 (2008)CrossRefGoogle Scholar
  12. 12.
    N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong, Nature, 429 (2004) 392.&nbspGoogle Scholar
  13. 13.
    N. Poudel, M. Gooch, B. Lorenz, C.W. Chu, J.W. Kim, S.W. Cheong, Phys. Rev. B 92, 144430 (2015)CrossRefGoogle Scholar
  14. 14.
    L.C. Chapon, G.R. Blake, M.J. Gutmann, S. Park, N. Hur, P.G. Radaelli, S.W. Cheong, Phys. Rev. Lett. 93, 177402 (2004)CrossRefGoogle Scholar
  15. 15.
    S. Mansouri, S. Jandl, B. Roberge, M. Balli, D.Z. Dimitrov, M. Orlita, C. Faugeras, J. Phys. Condens. Matter 28, 055901 (2016)CrossRefGoogle Scholar
  16. 16.
    S.I. Vorobeva, A.L. Getalova, E.I. Golovenchitsb, E.N. Komarova, V.P. Kopteva, S.A. Kotova, I.I. Pavlovaa, V.A. Saninab, G.V. Shcherbakova, Phys. Solid State 55, 466 (2013)CrossRefGoogle Scholar
  17. 17.
    A.B. Sushkov, R. Valdes Aguilar, S. Park, S.-W. Cheong, H.D. Drew, Phys. Rev. Lett. 98, 027202 (2007)CrossRefGoogle Scholar
  18. 18.
    V.Y. Ivanov, A.A. Mukhin, V.D. Travkin, A.S. Prokhorov, F. Popov Yu, A.M. Kadomtseva, G.P. Vorobev, K.I. Kamilov, A.M. Balbashov, Phys Stat Sol B 243, 107 (2006)CrossRefGoogle Scholar
  19. 19.
    Z. Shahri, A. Sobhani, M. Salavati-Niasari, Mater Res Bull 48, 3901 (2013)CrossRefGoogle Scholar
  20. 20.
    Y.B. Kannan, R. Saravanan, N. Srinivasan, Praveena K & Sadhana K, J, Mater Sci: Mater Electron 27, 12000 (2016)Google Scholar
  21. 21.
    P. Kuruva, S. Matteppanavar, S. Srinath, T. Thomas, IEEE transaction on Magnetics 50(1), 5200108 (2014)CrossRefGoogle Scholar
  22. 22.
    G. Zhua, P. Liua, M. Hojamberdievb, B. Gea, Y. Liuc, H. Miaoc, G. Tanc, Mater. Chem. Phys. 118, 467 (2009)CrossRefGoogle Scholar
  23. 23.
    Cullity B D & Stock S R, Elements of X-Ray Diffraction, (3rd ed., Prentice-Hall, Englewood ciffs), 20012001Google Scholar
  24. 24.
    N. Hill, A. J Phys Chem B 104, 6694 (2000)CrossRefGoogle Scholar
  25. 25.
    B. Mihailova, M.M. Gospodinov, B. Guttler, F. Yen, A.P. Litvinchuk, M.N. Iliev, Phys. Rev. B 71, 172301 (2005)CrossRefGoogle Scholar
  26. 26.
    J. Cao, L.I. Vergara, J.L. Musfeldt, A.P. Litvinchuk, Y.J. Wang, S. Park, S.W. Cheong, Phys. Rev. B 78, 064307 (2008)CrossRefGoogle Scholar
  27. 27.
    R. Valdes Aguilar, A.B. Sushkov, S. Park, S.W. Cheong, H.D. Drew, Phys. Rev. B 74, 184404 (2006)CrossRefGoogle Scholar
  28. 28.
    A.F. Garcia-Flores, E. Granado, H. Martinho, R.R. Urbano, C. Rettori, E.I. Golovenchits, V.A. Sanina, S.B. Oseroff, S. Park, S.-W. Cheong, Phys. Rev. B 73, 104411 (2006)CrossRefGoogle Scholar
  29. 29.
    K. Cao, G.-C. Guo, D. Vanderbilt, L. He, Phys. Rev. Lett. 103, 257201 (2009)CrossRefGoogle Scholar
  30. 30.
    Goodman G, Buchanan R C & Reynolds III T G Buchanan R C (Ed.), Ceramic Materials for Electronics: Processing Properties and Applications, (Marcel Dekker Inc., New York 32), 1991.Google Scholar
  31. 31.
    Levin I, Chan J Y, Maslar J E & Vanderah T A, J Appl Phys 90 [2] (2001) 904.Google Scholar
  32. 32.
    Mahato D K, Dutta A & Sinha T P, Physica B Condensed Matter, 406 [13] (2011) 2703.Google Scholar
  33. 33.
    V. Gupta, K.K. Bamzai, P.N. Kotru, B.M. Wanklyn, Mater Sci Eng B 130, 163 (2006)CrossRefGoogle Scholar
  34. 34.
    R. Gupta, S. Verma, D. Singh, K. Singh, K.K. Bamzai, Ceramics Process Appl Ceram 9(1), 1 (2015)CrossRefGoogle Scholar
  35. 35.
    J.C. Dyre, & Schroder Th B. Phys Stat Sol B 230, 5 (2002)CrossRefGoogle Scholar
  36. 36.
    Le Meins J M and Bohnke O and Courbion G 1998 Solid State Ionics 111 67.Google Scholar
  37. 37.
    S.H. Chung, K.R. Jeffrey, J.R. Stevens, L. Borjession, Phys. Rev. B 41, 6154 (1990)CrossRefGoogle Scholar
  38. 38.
    MVM Rao, S.N. Reddy, A.S. Chary, K. Shahi, Physics B 364, 306 (2005)CrossRefGoogle Scholar
  39. 39.
    A. Ebnalwaled, A. Mater Sci Eng B 174, 285 (2010)CrossRefGoogle Scholar
  40. 40.
    N.A. Hegab, M.A. Afifi, H.E. Atyia, A.S. Farid, J. Alloys Compd. 477, 925 (2009)CrossRefGoogle Scholar
  41. 41.
    A. Hunt, G. Philos Mag B 81, 875 (2001)CrossRefGoogle Scholar
  42. 42.
    Long A R, Hopping Transport in Solid, (North-Holland, Amsterdam) 1991.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Crystal Growth & Materials Research Laboratory, Department of Physics and ElectronicsUniversity of JammuJammuIndia
  2. 2.Department of PhysicsBanaras Hindu UniversityVaranasiIndia

Personalised recommendations