Advertisement

Ilmenite type nano-crystalline Co–Ti–O ternary oxides: sol–gel thin film on borosilicate glass, characterization and photocatalytic activity in mineralization of reactive red 198

  • Mohammad Hossein Habibi
  • Elahe Shojaee
Article

Abstract

The sol–gel preparation of cobalt titanium oxide nano-crystals using the reaction between cobalt chloride (CoCl2·6H2O) and tetraisopropyl orthotitanate (Ti[OCH(CH3)2]4) with 1:1 molar ratio was studied. The nano-crystals were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDAX), fourier transform infrared spectroscopy (FTIR), thermogravimetric (TG-DTG) analysis and UV–Vis diffuse reflectance spectra (UV–Vis DRS) spectroscopy. TG-DTG results revealed that the weight loss with peak temperatures of 189, 267 and 692 °C. The XRD results showed that the sample calcinated at 550 and 750 °C were mixtures of CoTiO3, Co3O4, and TiO2 phases while at 650 °C a single crystalline phase of CoTiO3 was formed. FESEM results of the cobalt titanium oxide nanocrystalles demonstrate that CoTiO3 is nano-particles with an average size of 70 nm. FTIR results showed the formation of cobalt–oxygen, titanium–oxygen, and titanium–oxygen–cobalt bonds. DRS spectroscopy results of the sample calcinated at 650 °C showed band gap of 1.734 eV (715 nm) and 2.389 eV (519 nm) well in the visible portion of sun light. The cobalt titanium oxide nano crystales thin films on borosilicate glass showed an excellent photocatalytic activity on mineralization of Reactive Red 198 textille dye as environmental pollutant of industrial wastewater. An excellent photocatalytic activity in mineralization of Reactive Red 198 is related to the efficient separation of cobalt titanium oxide nano-crystals and visible-light absorption.

Keywords

Photocatalytic Activity Co3O4 Ilmenite Calcination Temperature Diethylene Glycol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors wish to thank the University of Isfahan for financial support of this work.

References

  1. 1.
    B. Ntsendwana, S. Sampath, B.B. Mamba, O.S. Oluwafemi, O.A. Arotiba, J. Mater. Sci. 27, 592 (2016)Google Scholar
  2. 2.
    M. Mousavi, H.-Y. Aziz, J. Mater. Sci. 27, 8532 (2016)Google Scholar
  3. 3.
    P. Hemalatha, S.N. Karthick, K.V. Hemalatha, M. Yi, H.-J. Kim, M. Alagar, J. Mater. Sci. 27, 2367 (2016)Google Scholar
  4. 4.
    A. Alsbaiee, B.J. Smith, L. Xiao, Y. Ling, D.E. Helbling, W.R. Dichtel, Nature 529, 190 (2016)CrossRefGoogle Scholar
  5. 5.
    E. Forgacs, T. Cserhati, G. Oros, Environ. Int. 30, 953 (2004)CrossRefGoogle Scholar
  6. 6.
    I.A.W. Tan, A.L. Ahmad, B.H. Hameed, J. Hazard. Mater. 154, 337 (2008)CrossRefGoogle Scholar
  7. 7.
    C. Maximo, M.T.P. Amorim, M.C. Ferreira, Enzyme Microb. Technol. 32, 145 (2003)CrossRefGoogle Scholar
  8. 8.
    A.H. Kianfar, P. Dehghani, M.M. Momeni, J. Mater. Sci. 27, 3368 (2016)Google Scholar
  9. 9.
    M. Dostani, A.H. Kianfar, M.M. Momeni, J. Mater. Sci. (2016). doi: 10.1007/s10854-016-5568-0 Google Scholar
  10. 10.
    J. Xu, Y. Ao, M. Chen, D. Fu, C. Yuan, Thin Solid Films 518, 4170 (2010)CrossRefGoogle Scholar
  11. 11.
    M. Montazerozohori, J. Hasanalian, Environ. Prog. Sustain. Energy 32, 1061 (2013)CrossRefGoogle Scholar
  12. 12.
    M. Montazerozohori, M. Nasr-Esfahani, S. Joohari, Environ. Prot. Eng. 38, 47 (2012)Google Scholar
  13. 13.
    M. Montazerozohori, M. Nasr-Esfahani, Z. Moradi-shammi, A. Malekhoseini, J. Ind. Eng. Chem. 21, 1044 (2015)CrossRefGoogle Scholar
  14. 14.
    H. Moradi, A. Eshaghi, S.R. Hosseini, K. Ghani, Ultrason. Sonochem. 32, 314 (2016)CrossRefGoogle Scholar
  15. 15.
    W-K Jo, N.C.S. Selvam, J. Hazard. Mater. 299, 462 (2015)CrossRefGoogle Scholar
  16. 16.
    B. Lokesh, N.M. Rao, J. Mater. Sci. 27, 4253 (2016)Google Scholar
  17. 17.
    R. Talebi, J. Mater. Sci. 27, 4694 (2016)Google Scholar
  18. 18.
    S. Kurra, N.K. Veldurthi, J.R. Reddy, C.S. Reddy, M. Vitha, J. Mater. Sci. 27, 4194 (2016)Google Scholar
  19. 19.
    A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, M. Salavati-Niasari, H. Taqriri, S. Bagheri, K. Saberyan, J. Mater. Sci. 26, 5735 (2015)Google Scholar
  20. 20.
    T. Badapanda, S. Sarangi, S. Parida, B. Behera, B. Ojha, S. Anwar, J. Mater. Sci. 26, 3069 (2015)Google Scholar
  21. 21.
    T. Acharya, R.N.P. Choudhary, Mater. Chem. Phys. 177, 131 (2016)CrossRefGoogle Scholar
  22. 22.
    A. Mohammadi, M. Ghorbani, J. Mater. Sci. 26, 5243 (2015)Google Scholar
  23. 23.
    N.C. Wilson, J. Muscat, D. Mkhonto, P.E. Ngoepe, N.M. Harrison, Phys. Rev. B 71, 075202 (2005)CrossRefGoogle Scholar
  24. 24.
    A. Rujiwatra, N. Semakul, S. Surinwong, M. Chareonpanich, Chiang Mai J. Sci. 42, 857 (2015)Google Scholar
  25. 25.
    E.S. Kim, C.J. Jeon, J. Eur. Ceram. Soc. 30, 341 (2010)CrossRefGoogle Scholar
  26. 26.
    Q.J. Harris, Q. Feng, Y.S. Lee, R.J. Birgeneau, Phys. Rev. Lett. 78, 346 (1997)CrossRefGoogle Scholar
  27. 27.
    R. Fisch, Phys. Rev. B 51, 11507 (1995)CrossRefGoogle Scholar
  28. 28.
    F. Schoofs, M. Egilmez, T. Fix, J.L. Mac Manus Driscoll, M.G. Blamire, J. Magn. Magn. Mater. 332, 67 (2013)CrossRefGoogle Scholar
  29. 29.
    M.G. Blamire, J.L. Mac Manus-Driscoll, N.D. Mathur, Z.H. Barber, Adv. Mater. 21, 3827 (2009)CrossRefGoogle Scholar
  30. 30.
    G. Yang, W. Yan, J. Wang, H. Yang, Mater. Lett. 122, 117 (2014)CrossRefGoogle Scholar
  31. 31.
    J. Jiang, J. Luo, J. Zhu, X. Huang, J. Liu, T. Yu, Nanoscale 5, 8105 (2013)CrossRefGoogle Scholar
  32. 32.
    H.Y. He, Powder Metall. 51, 224 (2008)CrossRefGoogle Scholar
  33. 33.
    S. Klemme, W. Hermes, M. Eul, Chem. Cent. J. 5(1), 54 (2011)CrossRefGoogle Scholar
  34. 34.
    S.A. Saafan, S.T. Assar, B.M. Moharram, M.K. ElNimr, J. Magn. Magn. Mater. 322, 628 (2010)CrossRefGoogle Scholar
  35. 35.
    M.H. Habibi, E. Shojaee, J. Mater. Sci. (2016). doi: 10.1007/s10854-016-6271-x Google Scholar
  36. 36.
    M. Ranjbar, M. Salavati-Niasari, S.M. Hosseinpour-Mashkani, J. Inorg. Organomet. Poly. Mater. 22, 1093 (2012)CrossRefGoogle Scholar
  37. 37.
    A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, M. Salavati-Niasari, S. Bagheri, J. Clust. Sci. 26, 1305 (2015)CrossRefGoogle Scholar
  38. 38.
    Y.J. Lin, Y.H. Chang, W.D. Yang, B.S. Tsai, J. Non-Cryst. Solids 352, 789 (2006)CrossRefGoogle Scholar
  39. 39.
    R.Q. Ye, H.B. Fang, Y.-Z. Zheng, N. Li, Y. Wang, X. Tao, ACS Appl. Mater. Interfaces 8, 13879 (2016)CrossRefGoogle Scholar
  40. 40.
    M.A. Lazar, S. Varghese, S.S. Nair, Catalysts 2, 572 (2012)CrossRefGoogle Scholar
  41. 41.
    C. Lu, W. Guan, T.K.A. Hoang, J. Guo, H. Gou, Y. Yao, J. Mater. Sci. 27, 1966 (2016)Google Scholar
  42. 42.
    O. Carp, C.L. Husman, A. Reller, Prog. Solid State Chem. 32, 33 (2004)CrossRefGoogle Scholar
  43. 43.
    X. Wang, Z. Li, J. Shi, Y. Yu, Chem. Rev. 114, 9346 (2014)CrossRefGoogle Scholar
  44. 44.
    R.V. Rodrigues, E.J.B. Muri, P.C.M. da Cruz, A.A.L. Marins, L.U. Khan, R.M. Oliveira, J.R. Matos, H.F. Brito, L.C. Machado, J. Therm. Anal. Calorim. 126, 1499 (2016)CrossRefGoogle Scholar
  45. 45.
    M.S. Sadjadi, K. Zare, S. Khanahmadzadeh, M. Enhessari, Mater. Lett. 62, 3679 (2008)CrossRefGoogle Scholar
  46. 46.
    M.H. Habibi, A. Hassanzadeh, S. Mahdavi, J. Photochem. Photobiol. A 172, 89 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Nanotechnology Laboratory, Department of ChemistryUniversity of IsfahanIsfahanIslamic Republic of Iran

Personalised recommendations