Effect of Co doping on the structural and optical properties of ZnO nanospindles synthesized by co-precipitation method

  • K. Nomita Devi
  • W. Joychandra Singh
  • K. Jugeshwar Singh


Co doped ZnO nanospindles with general compositional formula Zn1−xCoxO (0 ≤ x ≤ 0.1) are prepared by wet chemical co precipitation method. The samples are characterized for its structural, morphological, compositional and optical properties by X-ray diffraction (XRD), Scanning electron microscope (SEM), Energy dispersive analysis of X-rays (EDAX), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and UV–Vis absorption spectroscopy. XRD patterns confirm wurtzite structure with no secondary phases for pure and Co doped ZnO samples. The crystallite size of the samples calculated from the XRD patterns are found to be in the range of 22–31 nm. SEM images show that the particles are spindle shape with an average length and diameter 660 and 295 nm respectively. The average particle size as calculated from TEM image are found to be in the range of 28–40 nm. EDAX spectra confirms the presence of Co in the samples with expected stoichiometry. FTIR results give information about the nature of chemical bonding and incorporation of the dopants into the ZnO lattice. UV–Visible spectra show well excitonic absorption peaks and the band gap energies are estimated to values between 3.15–3.54 eV. The variation of band gap energy is discussed.


Select Area Electron Diffraction Excitonic Absorption Peak Burstein Moss Shift Select Area Electron Diffraction Image Oriented Attachment Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



K. Nomita Devi would like to acknowledge UGC, India [Ref. No.F.20-1(18)/2012 (BSR) dated 8 March, 2013] for providing financial support to carry out this work.


  1. 1.
    Z.L. Wang, J. Phys. 16, R829 (2004)Google Scholar
  2. 2.
    W.J. Jeong, S.K. Kim, G.C. Park, Thin Solid Films 506–507, 180 (2006)CrossRefGoogle Scholar
  3. 3.
    K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo, S. Niki, Thin Solid Films 431–432, 369 (2003)CrossRefGoogle Scholar
  4. 4.
    H. Sun, Q. Zhang, J. Zhang, T. Deng, J. Wu, Appl. Phys. B 90, 543 (2008)CrossRefGoogle Scholar
  5. 5.
    W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, S. M. Liu, X. Zhou, R. Zhang, Y. Shi, Y. D. Zheng, Y. Hang, C.L. Zhang, Appl. Phys. Lett. 88, 092101 (2006)CrossRefGoogle Scholar
  6. 6.
    C.R. Gorla, N.W. Emanetoglu, S. Liang, W.E. Mayo, Y. Lu, M. Wraback, H. Shen, J. Appl. Phys. 85, 2595 (1999)CrossRefGoogle Scholar
  7. 7.
    X.Y. Du, Y.Q. Fu, S.C. Tan, J.K. Luo, A.J. Flewitt, W.I. Milne, D.S. Lee, N.M. Park, J. Park, Y.J. Choi, S.H. Kim, S. Maeng, Appl. Phys. Lett. 93, 094105 (2008)CrossRefGoogle Scholar
  8. 8.
    J. Xu, Q. Pan, Y. Shun, Z. Tian, Sens. Actuators B 66, 277 (2000)CrossRefGoogle Scholar
  9. 9.
    P.S. Cho, K. Kim, J. Lee, J. Electroceram 17, 975 (2006)CrossRefGoogle Scholar
  10. 10.
    R.L. Hoffman, B.J. Norris, J.F. Wager, Appl. Phys. Lett. 82, 733 (2003)CrossRefGoogle Scholar
  11. 11.
    P.F. Carcia, R.S. McLean, M.H. Reilly, G.J. Nunes, Appl. Phys. Lett. 82, 1117 (2003)CrossRefGoogle Scholar
  12. 12.
    K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmob, H. Siegbahn, J. Photochem. Photobio. A 148, 57 (2002)CrossRefGoogle Scholar
  13. 13.
    K. Keis, L. Vayssieres, S.E. Lindquist, A. Hagfeldt, Nanostructure Mater. 12, 487490 (1999)CrossRefGoogle Scholar
  14. 14.
    V. Gupta, Thin Solid Films 519, 1141 (2010)CrossRefGoogle Scholar
  15. 15.
    M.Q. Israr, J.R. Sadaf, M.H. Asif, O. Nur, M. Willander, B. Danielsson, Thin Solid Films 519, 1106 (2010)CrossRefGoogle Scholar
  16. 16.
    R. Saleh, S.P. Prakoso, A. Fishli, J. Magn. Mag. Mater. 324 665 (2012)CrossRefGoogle Scholar
  17. 17.
    M. El-Hilo, A.A. Dakhel, Y.A. Ali-Mohamed, J. Magn. Mag. Mater. 321, 2279 (2009)CrossRefGoogle Scholar
  18. 18.
    A.S. Wolf et al., Science 294, 1488 (2001)CrossRefGoogle Scholar
  19. 19.
    A. Hirohata, K. Takanash, D. Phys, Appl. Phys. 47, 193001 (2014)Google Scholar
  20. 20.
    H. Wang, H.B. Wang, F.J. Yang, Y. Chen, C. Zhang, C.P. Yang, Q. Li, S.P. Wong, Nanotechnology 17, 4312 (2006)CrossRefGoogle Scholar
  21. 21.
    S. Xiao-yi, Z. Yan-chun, Z. Yan-Hui, Trans. Nonferrous Met. Soc. China 20, s236 (2010)CrossRefGoogle Scholar
  22. 22.
    J. El Ghoul, M. Kraini, L. El Mir, J. Mater. Sci. 26, 2555 (2015)Google Scholar
  23. 23.
    M. Khasif, S.M. Urman Ali, M.E. Ali, H.T. Abdulgafour, U. Hashim, M. Willander, Z. Hassan, Phys. Status Solidi A 209(1), 143 (2012)CrossRefGoogle Scholar
  24. 24.
    V. Gandhi, R. Ganesan, H. Haja Abdul Rahman, S. Ahamed, M. Thaiyan, J. Phys. Chem. C 118, 9715 (2014)CrossRefGoogle Scholar
  25. 25.
    N.K. Singh, A. Alqudami, S. Annapoorni, Phys. Status Solidi A 207(9), 2153 (2010)CrossRefGoogle Scholar
  26. 26.
    G. Vijayaprasath, R. Murugan, T. Mahalingam, G. Ravi, J. Mater. Sci. 26, 7205 (2015)Google Scholar
  27. 27.
    K. Raja, P.S. Ramesh, D. Geetha, Spectrochim. Acta Part A 120, 19 (2014)CrossRefGoogle Scholar
  28. 28.
    B.D. Culity, Elements of X-Ray Diffraction (Addison-Wesley Publishing Company, Inc, Boston, 1956), p. 99Google Scholar
  29. 29.
    J.A. Naijein, J.M. Rozaiq, Int. Lett. Chem. Phys. Astronomy 15, 137 (2013)CrossRefGoogle Scholar
  30. 30.
    H. Zhou, D. Yi, Z. Yu, L. Xiao, J. Li, Thin Soloid Films 515, 6909 (2007)CrossRefGoogle Scholar
  31. 31.
    S.C. Erwin, L. Zu, M.I. haftel, A.L. Efros, T. A. Kennedy, D.J. Norris, Nature Lett. 436, 91 (2005)CrossRefGoogle Scholar
  32. 32.
    J.D. Bryan, D.R. Gamelin, Prog. Inorg. Chem. 54, 47 (2005)CrossRefGoogle Scholar
  33. 33.
    Dhurvashi, P.K. Shishodia, Thin Solid Films 612, 55 (2016)Google Scholar
  34. 34.
    L.E. Smart, E.A. Moore, An Introduction to Solid State Chemistry, (Taylor & Francis Group, Boca Raton, 2005), p. 33Google Scholar
  35. 35.
    R. Elilarassi, G. Chandrasekaran, J. Mater Sci. 24, 96 (2013)Google Scholar
  36. 36.
    H.S. Al-Salman, M.J. Abdullah, Superlattices Microstruct. 60, 349 (2013)CrossRefGoogle Scholar
  37. 37.
    V. Gandhi, R. Ganesan, H.H.A. Syedahamed, J. Phys. Chem. C 118, 9715 (2014)CrossRefGoogle Scholar
  38. 38.
    S. Kolesnik, B. Dabrowski, J. Mais, J. Appl. Phys 95, 2582 (2004)CrossRefGoogle Scholar
  39. 39.
    C.N.R. Rao, A. Müller, A.K. Cheetham, Nanomaterials—An introduction, in the chemistry of nanomaterials: synthesis, properties and applications ch 1, (Wiley-VCH Verlag GmbH & Co., Weinheim, 2004)CrossRefGoogle Scholar
  40. 40.
    R.F. Egerton, Physical principles of electron microscopy (Springer, Berlin, 2005), p. 112CrossRefGoogle Scholar
  41. 41.
    Y.S. Sonawane, K.G. Kande, B.B. Kale, R.C. Aiyer, Mater. Res. Bull 43, 2719 (2008)CrossRefGoogle Scholar
  42. 42.
    K. Yosida, Phy. Rev. 106, 893 (1957)CrossRefGoogle Scholar
  43. 43.
    H. Kumagai, Y. Oka, S. Kawata, M. Ohba, K. Inoue, M. Kurmoo, H. Okawa, Plyhedron 22, 1917 (2003)CrossRefGoogle Scholar
  44. 44.
    F.A. Sigoli, M.R. Davolos, M. Jafelicci, J. Alloys Compd. 262/263, 292 (1997)CrossRefGoogle Scholar
  45. 45.
    L.S. Devi, K.N. Devi, B.I. Sharma, H.N. Sarma, Indian J. Phys. 88(5), 477 (2014)CrossRefGoogle Scholar
  46. 46.
    J. Kossut, J.A. Gaj, Introduction to the physics of diluted magnetic semiconductors: springer series in materials science (Springer-Verlag, Berlin, 2010), p. 144Google Scholar
  47. 47.
    R. Viswanatha, S. Sapra, S.S. Gupta, B. Satpati, P.V. Satyam, B.N. Dev, D.D. Sarma, J. Phys. Chem. B 108, 6303 (2004)CrossRefGoogle Scholar
  48. 48.
    S. Venkataprasad Bhat, F.L. Deepak, Solid State Commun. 135, 345 (2005)CrossRefGoogle Scholar
  49. 49.
    N.S. Sabri, M.S. Mohd Deni, A. Zakaria, M. K. Talari, Phys. Procedia 25, 233 (2012)CrossRefGoogle Scholar
  50. 50.
    P. Chakrabort, G. Datta, K. Ghatak, Physica Scripta 68, 368 (2003)CrossRefGoogle Scholar
  51. 51.
    M. Ivill, S.J. Pearton, S. Rawal, L. Eu, P. Sadik, R. Das, A.F. Hebard, M. Chisholm, J.D. Budai, D.P. Norton, New J. Phys. 10, 1 (2008)CrossRefGoogle Scholar
  52. 52.
    H.S. Al-Salman, M.J. Abdullah, Supperlattices Microstruct. 60, 349 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • K. Nomita Devi
    • 1
  • W. Joychandra Singh
    • 1
  • K. Jugeshwar Singh
    • 2
  1. 1.Department of PhysicsManipur UniversityImphalIndia
  2. 2.Talent Development CentreIndian Institute of ScienceKudapuraIndia

Personalised recommendations