Skip to main content
Log in

Effect of Co doping on the structural and optical properties of ZnO nanospindles synthesized by co-precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Co doped ZnO nanospindles with general compositional formula Zn1−xCoxO (0 ≤ x ≤ 0.1) are prepared by wet chemical co precipitation method. The samples are characterized for its structural, morphological, compositional and optical properties by X-ray diffraction (XRD), Scanning electron microscope (SEM), Energy dispersive analysis of X-rays (EDAX), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and UV–Vis absorption spectroscopy. XRD patterns confirm wurtzite structure with no secondary phases for pure and Co doped ZnO samples. The crystallite size of the samples calculated from the XRD patterns are found to be in the range of 22–31 nm. SEM images show that the particles are spindle shape with an average length and diameter 660 and 295 nm respectively. The average particle size as calculated from TEM image are found to be in the range of 28–40 nm. EDAX spectra confirms the presence of Co in the samples with expected stoichiometry. FTIR results give information about the nature of chemical bonding and incorporation of the dopants into the ZnO lattice. UV–Visible spectra show well excitonic absorption peaks and the band gap energies are estimated to values between 3.15–3.54 eV. The variation of band gap energy is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z.L. Wang, J. Phys. 16, R829 (2004)

    Google Scholar 

  2. W.J. Jeong, S.K. Kim, G.C. Park, Thin Solid Films 506–507, 180 (2006)

    Article  Google Scholar 

  3. K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo, S. Niki, Thin Solid Films 431–432, 369 (2003)

    Article  Google Scholar 

  4. H. Sun, Q. Zhang, J. Zhang, T. Deng, J. Wu, Appl. Phys. B 90, 543 (2008)

    Article  Google Scholar 

  5. W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, S. M. Liu, X. Zhou, R. Zhang, Y. Shi, Y. D. Zheng, Y. Hang, C.L. Zhang, Appl. Phys. Lett. 88, 092101 (2006)

    Article  Google Scholar 

  6. C.R. Gorla, N.W. Emanetoglu, S. Liang, W.E. Mayo, Y. Lu, M. Wraback, H. Shen, J. Appl. Phys. 85, 2595 (1999)

    Article  Google Scholar 

  7. X.Y. Du, Y.Q. Fu, S.C. Tan, J.K. Luo, A.J. Flewitt, W.I. Milne, D.S. Lee, N.M. Park, J. Park, Y.J. Choi, S.H. Kim, S. Maeng, Appl. Phys. Lett. 93, 094105 (2008)

    Article  Google Scholar 

  8. J. Xu, Q. Pan, Y. Shun, Z. Tian, Sens. Actuators B 66, 277 (2000)

    Article  Google Scholar 

  9. P.S. Cho, K. Kim, J. Lee, J. Electroceram 17, 975 (2006)

    Article  Google Scholar 

  10. R.L. Hoffman, B.J. Norris, J.F. Wager, Appl. Phys. Lett. 82, 733 (2003)

    Article  Google Scholar 

  11. P.F. Carcia, R.S. McLean, M.H. Reilly, G.J. Nunes, Appl. Phys. Lett. 82, 1117 (2003)

    Article  Google Scholar 

  12. K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmob, H. Siegbahn, J. Photochem. Photobio. A 148, 57 (2002)

    Article  Google Scholar 

  13. K. Keis, L. Vayssieres, S.E. Lindquist, A. Hagfeldt, Nanostructure Mater. 12, 487490 (1999)

    Article  Google Scholar 

  14. V. Gupta, Thin Solid Films 519, 1141 (2010)

    Article  Google Scholar 

  15. M.Q. Israr, J.R. Sadaf, M.H. Asif, O. Nur, M. Willander, B. Danielsson, Thin Solid Films 519, 1106 (2010)

    Article  Google Scholar 

  16. R. Saleh, S.P. Prakoso, A. Fishli, J. Magn. Mag. Mater. 324 665 (2012)

    Article  Google Scholar 

  17. M. El-Hilo, A.A. Dakhel, Y.A. Ali-Mohamed, J. Magn. Mag. Mater. 321, 2279 (2009)

    Article  Google Scholar 

  18. A.S. Wolf et al., Science 294, 1488 (2001)

    Article  Google Scholar 

  19. A. Hirohata, K. Takanash, D. Phys, Appl. Phys. 47, 193001 (2014)

    Google Scholar 

  20. H. Wang, H.B. Wang, F.J. Yang, Y. Chen, C. Zhang, C.P. Yang, Q. Li, S.P. Wong, Nanotechnology 17, 4312 (2006)

    Article  Google Scholar 

  21. S. Xiao-yi, Z. Yan-chun, Z. Yan-Hui, Trans. Nonferrous Met. Soc. China 20, s236 (2010)

    Article  Google Scholar 

  22. J. El Ghoul, M. Kraini, L. El Mir, J. Mater. Sci. 26, 2555 (2015)

    Google Scholar 

  23. M. Khasif, S.M. Urman Ali, M.E. Ali, H.T. Abdulgafour, U. Hashim, M. Willander, Z. Hassan, Phys. Status Solidi A 209(1), 143 (2012)

    Article  Google Scholar 

  24. V. Gandhi, R. Ganesan, H. Haja Abdul Rahman, S. Ahamed, M. Thaiyan, J. Phys. Chem. C 118, 9715 (2014)

    Article  Google Scholar 

  25. N.K. Singh, A. Alqudami, S. Annapoorni, Phys. Status Solidi A 207(9), 2153 (2010)

    Article  Google Scholar 

  26. G. Vijayaprasath, R. Murugan, T. Mahalingam, G. Ravi, J. Mater. Sci. 26, 7205 (2015)

    Google Scholar 

  27. K. Raja, P.S. Ramesh, D. Geetha, Spectrochim. Acta Part A 120, 19 (2014)

    Article  Google Scholar 

  28. B.D. Culity, Elements of X-Ray Diffraction (Addison-Wesley Publishing Company, Inc, Boston, 1956), p. 99

    Google Scholar 

  29. J.A. Naijein, J.M. Rozaiq, Int. Lett. Chem. Phys. Astronomy 15, 137 (2013)

    Article  Google Scholar 

  30. H. Zhou, D. Yi, Z. Yu, L. Xiao, J. Li, Thin Soloid Films 515, 6909 (2007)

    Article  Google Scholar 

  31. S.C. Erwin, L. Zu, M.I. haftel, A.L. Efros, T. A. Kennedy, D.J. Norris, Nature Lett. 436, 91 (2005)

    Article  Google Scholar 

  32. J.D. Bryan, D.R. Gamelin, Prog. Inorg. Chem. 54, 47 (2005)

    Article  Google Scholar 

  33. Dhurvashi, P.K. Shishodia, Thin Solid Films 612, 55 (2016)

  34. L.E. Smart, E.A. Moore, An Introduction to Solid State Chemistry, (Taylor & Francis Group, Boca Raton, 2005), p. 33

    Google Scholar 

  35. R. Elilarassi, G. Chandrasekaran, J. Mater Sci. 24, 96 (2013)

    Google Scholar 

  36. H.S. Al-Salman, M.J. Abdullah, Superlattices Microstruct. 60, 349 (2013)

    Article  Google Scholar 

  37. V. Gandhi, R. Ganesan, H.H.A. Syedahamed, J. Phys. Chem. C 118, 9715 (2014)

    Article  Google Scholar 

  38. S. Kolesnik, B. Dabrowski, J. Mais, J. Appl. Phys 95, 2582 (2004)

    Article  Google Scholar 

  39. C.N.R. Rao, A. Müller, A.K. Cheetham, Nanomaterials—An introduction, in the chemistry of nanomaterials: synthesis, properties and applications ch 1, (Wiley-VCH Verlag GmbH & Co., Weinheim, 2004)

    Book  Google Scholar 

  40. R.F. Egerton, Physical principles of electron microscopy (Springer, Berlin, 2005), p. 112

    Book  Google Scholar 

  41. Y.S. Sonawane, K.G. Kande, B.B. Kale, R.C. Aiyer, Mater. Res. Bull 43, 2719 (2008)

    Article  Google Scholar 

  42. K. Yosida, Phy. Rev. 106, 893 (1957)

    Article  Google Scholar 

  43. H. Kumagai, Y. Oka, S. Kawata, M. Ohba, K. Inoue, M. Kurmoo, H. Okawa, Plyhedron 22, 1917 (2003)

    Article  Google Scholar 

  44. F.A. Sigoli, M.R. Davolos, M. Jafelicci, J. Alloys Compd. 262/263, 292 (1997)

    Article  Google Scholar 

  45. L.S. Devi, K.N. Devi, B.I. Sharma, H.N. Sarma, Indian J. Phys. 88(5), 477 (2014)

    Article  Google Scholar 

  46. J. Kossut, J.A. Gaj, Introduction to the physics of diluted magnetic semiconductors: springer series in materials science (Springer-Verlag, Berlin, 2010), p. 144

    Google Scholar 

  47. R. Viswanatha, S. Sapra, S.S. Gupta, B. Satpati, P.V. Satyam, B.N. Dev, D.D. Sarma, J. Phys. Chem. B 108, 6303 (2004)

    Article  Google Scholar 

  48. S. Venkataprasad Bhat, F.L. Deepak, Solid State Commun. 135, 345 (2005)

    Article  Google Scholar 

  49. N.S. Sabri, M.S. Mohd Deni, A. Zakaria, M. K. Talari, Phys. Procedia 25, 233 (2012)

    Article  Google Scholar 

  50. P. Chakrabort, G. Datta, K. Ghatak, Physica Scripta 68, 368 (2003)

    Article  Google Scholar 

  51. M. Ivill, S.J. Pearton, S. Rawal, L. Eu, P. Sadik, R. Das, A.F. Hebard, M. Chisholm, J.D. Budai, D.P. Norton, New J. Phys. 10, 1 (2008)

    Article  Google Scholar 

  52. H.S. Al-Salman, M.J. Abdullah, Supperlattices Microstruct. 60, 349 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

K. Nomita Devi would like to acknowledge UGC, India [Ref. No.F.20-1(18)/2012 (BSR) dated 8 March, 2013] for providing financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nomita Devi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, K.N., Singh, W.J. & Singh, K.J. Effect of Co doping on the structural and optical properties of ZnO nanospindles synthesized by co-precipitation method. J Mater Sci: Mater Electron 28, 8211–8217 (2017). https://doi.org/10.1007/s10854-017-6532-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6532-3

Keywords

Navigation