Structural and electrical transport studies in Bi-substituted Yttrium Chromite

  • Venkateswara Rao Mannepalli
  • Ranjith Ramadurai


Perovskite type chromites are studied recently for their fascinating structure and inter-related functional properties. YCrO3 (YCO) is one among the chromites which possess structural heterogeneity. The structural studies on YCrO3 (YCO) and Y0.9Bi0.1CrO3 (YBiCO-10) reveal that the powder diffraction patterns exhibits a single phase with orthorhombic Pnma space group. Compositional studies on YCO and YBiCO-10 indicates the cation ratios of (Y, Bi):Cr (1:1) is preserved. Microstructural studies reveal that there is an increment in grain growth in YBiCO-10 ceramics. The microstructural studies also evidently show that YBiCO-10 has more of faceted orthorhombic type of grains, whereas, YCO has a spherical grain type of features. Impedance spectroscopy studies were performed on both YCO and YBiCO ceramics and the studies reveal a significant change in grain resistance. The decrease of resistance could be due to increase of grain size which offers the conductive path of hopping of charge carriers or inherent electrical transitions of Cr3+ in YBiCO-10 sample. These chromites can be used as potential candidates for the thermistor applications whose thermistor parameter (β) and sensitivity (α) values are 2873 K, −5 × 10− 3 K−1 (YCO) and 3102 K,−5.44 × 10− 3K−1 (YBiCO-10) at 755 K.


Chromite Seebeck Coefficient Negative Temperature Coefficient Lanthanum Chromite Negative Temperature Coefficient Thermistor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors V.M would like to acknowledge MHRD, Govt of India.


  1. 1.
    N.Q. Minh, J. Am. Ceram. Soc. 76, 563 (1993)CrossRefGoogle Scholar
  2. 2.
    D. Mescia, E. Cauda, N. Russo, D. Fino, G. Saracco, V. Specchia, Catal. Today 117, 369 (2006)CrossRefGoogle Scholar
  3. 3.
    B. Tiwari, A. Dixit, R. Naik, G. Lawes, M.S.R. Rao, Appl. Phys. Lett. 103, 152906 (2013)CrossRefGoogle Scholar
  4. 4.
    B. Rajeswaran, D.I. Khomskii, A.K. Zvezdin, C.N.R. Rao, A. Sundaresan Phys. Rev. B 86, 214409 (2012)CrossRefGoogle Scholar
  5. 5.
    G. Alvarez, H. Montiel, M.P. Cruz, A.C. Durán, R. Zamorano, J. Alloys Compd. 509, L331 (2011)CrossRefGoogle Scholar
  6. 6.
    A.K. Tripathi, H.B. Lal, Mat. Res. Bull 15, 233 (1980)CrossRefGoogle Scholar
  7. 7.
    G.V. Subba rao, B.M. Wanklyn, C.N.R, Rao, J. Phys. Chem. Solids 32, 345 (1971)CrossRefGoogle Scholar
  8. 8.
    Antonio Feteira, J. Am. Ceram. Soc. 92, 967 (2009)CrossRefGoogle Scholar
  9. 9.
    O. Mrooz, A. Kovalski, J. Pogorzelska, O. Shpotyuk, M. Vakiv, B. Butkiewicz, J. Maciak, Microelectron. Reliab. 41, 773 (2001)CrossRefGoogle Scholar
  10. 10.
    W.G. Zijlstra, J.R. Brunsting, L.B.V.D. Slikke, Nat. Lett. 184, 991 (1959)CrossRefGoogle Scholar
  11. 11.
    K. Park, S.J. Yun. Mater. Lett. 58, 933 (2004)CrossRefGoogle Scholar
  12. 12.
    M.A.L. Nobre, S. Lanfredi, Appl.Phys.Lett. 82, 2284 (2003)CrossRefGoogle Scholar
  13. 13.
    S.A. Kanade, Vijaya Puri, Mater. Lett. 60, 1428 (2006)CrossRefGoogle Scholar
  14. 14.
    K. Takenaka, A. Ozawa, T. Shibayama, N. Kaneko, T. Oe, C. Urano, Appl. Phys. Lett. 98, 022103 (2011)CrossRefGoogle Scholar
  15. 15.
    Ying Luo, Xvqiong Li, Xinyu Liu, J.Alloy compds. 509, 463 (2011)CrossRefGoogle Scholar
  16. 16.
    Bo Zhang, Qing Zhao, Amin Chang, Yiyu Li, Yin Liu, Yiquan Wu, Appl.Phys.Lett 104, 102109 (2014)CrossRefGoogle Scholar
  17. 17.
    A. Ngueteu kamlo, J. Bernard, C. lelievre, D. Houivet, J. Eur. Ceram. Soc. 31, 1457 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Saha, Sadhan Chanda, Alo Dutta, P.T. Sinha, J. Sol–Gel Sci. Technol. 69, 553 (2013)Google Scholar
  19. 19.
    J. Rodrigues-Carvajal, An introduction to the program Fullprof Rietveld Refinement and Pattern matching Analysis. Laboratoire Leon Brillioun CEA-CNRS, France (2000)Google Scholar
  20. 20.
    M.C. Weber, J. Kreisel, P.A. Thomas, M. Newton, K. Sardar R.I. Walton, Phys. Rev. B 85, 054303 (2012)CrossRefGoogle Scholar
  21. 21.
    Xiaofei Wang, Lu Xiaomeli, Chao Zhang, Wu Xiabo, Wei Cai, Song Peng, Bo Huifeng, Yi Kan, F. Huang, J. Zhu, J. Appl. Phys. 107, 114101 (2010)CrossRefGoogle Scholar
  22. 22.
    A.S. Bondarenko, G.A. Ragoisha, in Progress in Chemometrics Research, ed. by A.L. Pomerantsev, (Nova Science Publishers), New York, 2005), pp. 89–102Google Scholar
  23. 23.
    R. Schmidt, A. Brinkman, J. Appl. Phys. 103, 113710 (2008)CrossRefGoogle Scholar
  24. 24.
    L. He, Z. Ling, Appl. Phys. Lett. 98, 242112 (2011)CrossRefGoogle Scholar
  25. 25.
    M.A.L. Nobre, S. Lanfredi, J. Appl. Phys. 93, 5576 (2003)CrossRefGoogle Scholar
  26. 26.
    S. Biswas, S. Pal, Ceram. Int. 41, 14712 (2015)CrossRefGoogle Scholar
  27. 27.
    Z.X. Cheng, X.L. Wang, S.X. Dou, H. Kimura, K. Ozawa J. Appl. Phys. 107, 09D905 (2010)CrossRefGoogle Scholar
  28. 28.
    K. Ramesha, A. Llobet, Th. Proffen, C.R. Serrao, C.N.R. Rao, J. Phys. Condens. Matter. 19, 102202 (2007)CrossRefGoogle Scholar
  29. 29.
    A.S. Nowick, S.Q. Fu, W.-K. Lee, B.S. Lim, T. Scherban Mater. Sci. Eng. B 23, 19 (1994)CrossRefGoogle Scholar
  30. 30.
    A. Feltz, J. Eur. Ceram. Soc. 20, 2367 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Venkateswara Rao Mannepalli
    • 1
  • Ranjith Ramadurai
    • 1
  1. 1.Department of Materials Science and Metallurgical EngineeringIndian Institute of Technology HyderabadSangareddyIndia

Personalised recommendations