Structural and morphological changes with substrate heating in zinc films synthesized by thermal vapor deposition technique

  • C. Sneha
  • C. Prabukumar
  • M. Jayalakshmi
  • K. Udaya Bhat


Zinc oxide (ZnO) films are used in numerous applications such as solar cells, gas sensors, nanogenerators, etc., owing to their large band gap, piezoelectric activity and versatile nanostructures. Deposition of zinc films and their subsequent oxidation is considered as one of the successful methods to obtain nanostructured ZnO films. It has been reported that the structural features of the oxide film depends on the characteristics of parent zinc film; which in turn depends on the deposition parameters. In the present work, zinc films were synthesized by thermal vacuum deposition route. In order to understand the effect of substrate heating during deposition, zinc films were deposited on glass with different substrate temperatures, in the range of room temperature to 180 °C. The structural and morphological properties of as-synthesized films were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) techniques. The XRD data confirmed that the as-synthesized films have strong (002) preferential orientation. Notable changes were observed such as change in crystallite size, texture coefficient and strain in the films, upon changing the substrate temperature. The morphology of as-synthesized zinc films found to consist of hexagonal-plate like structures. It was observed that the dimensions of the hexagonal-plates were changed in accordance with the substrate temperature. DSC results indicated a depression in the melting point of zinc films compared to bulk zinc and it is attributed to the nanoscale features constituting the film.


Substrate Temperature Substrate Heating Differential Scanning Calorimetry Data Texture Coefficient Nanoscale Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455–459 (2005)CrossRefGoogle Scholar
  2. 2.
    S. Xu, C. Xu, Y. Liu, Y. Hu, R. Yang, Q. Yang, J.H. Ryou, H.J. Kim, Z. Lochner, S. Choi, R. Dupuis, Z.L. Wang, Adv. Mater. 22, 4749 (2010)CrossRefGoogle Scholar
  3. 3.
    T. Senthil, S. Anandhan, J. Colloid Interface Sci. 432, 285–296 (2014)CrossRefGoogle Scholar
  4. 4.
    Z.L. Wang, J. Song, Science 312, 242 (2006)CrossRefGoogle Scholar
  5. 5.
    X.F. Duan, Y. Huang, Y. Cui, J.F. Wang, C.M. Lieber, Nature 409, 66–69 (2001)CrossRefGoogle Scholar
  6. 6.
    M.-C. Pan, T.-H. Wu, T.-A. Bui, W.-C. Shih, J. Mater. Sci. –Mater. Electron. 23, 418–424 (2012)CrossRefGoogle Scholar
  7. 7.
    I. Mihailova, V. Gerbreders, E. Tamanis, E. Sledevskis, R. Viter, P. Sarajevs, J. Non-Cryst. Solids 377, 212–216 (2013)CrossRefGoogle Scholar
  8. 8.
    B.L. Rivera-Flores, T. Díaz-Becerril, C. Bueno-Avendano, R. Galeazzi-Isasmendi, E. Rosendo-Andres, G. García-Salgado, H. Juarez-Santiesteban, M. Pacio-Castillo, C. Morales-Ruiz, Superficies y Vacio 27, 82–87 (2014)Google Scholar
  9. 9.
    M. Purica, E. Budianu, E. Rusu, M. Danila, R. Gavrila, Thin Solid Films 403–404, 485–488 (2002)CrossRefGoogle Scholar
  10. 10.
    S.-N. Bai, S.-C. Wu, J. Mater. Sci. Mater. Electron. 22, 339–344 (2011)CrossRefGoogle Scholar
  11. 11.
    M.R. Khanlary, V. Vahedi, A. Reyhani, Molecules 17, 5021–5029 (2012)CrossRefGoogle Scholar
  12. 12.
    C.F. Guo, Y. Wang, P. Jiang, S. Cao, J. Miao, Z. Zhang, Q. Liu, Nanotechnology 19, 445710 (2008)CrossRefGoogle Scholar
  13. 13.
    P.E. Acuna-Avila, R. Lopez, E. Vigueras-Santiago, S. Hernandez-Lopez, M. Camacho-Lopez, C. Ornelas-Gutierrez, W. Antunez, AIP Adv. 5, 067109 (2015)CrossRefGoogle Scholar
  14. 14.
    R.S. Devan, J.H. Lin, Y.J. Huang, C.C. Yang, S.Y. Wu, Y. Liou, Y.R. Ma, Nanoscale 3, 4339 (2011)CrossRefGoogle Scholar
  15. 15.
    S.A.J. Jassim, A.A.R.A. Zumaila, G.A.A. Al Waly, Results Phys. 3, 173–178(2013)CrossRefGoogle Scholar
  16. 16.
    M. Benhaliliba, C.E. Benouis, Z. Mouffak, Y.S. Ocak, A. Tiburcio-Silver, M.S. Aida, A.A. Garcia, A. Tavira, A.S. Juarez, Superlattices Microstruct. 63, 228 (2013)CrossRefGoogle Scholar
  17. 17.
    M.S. Aida, E. Tomasella, J. Cellier, M. Jacquet, N. Bouhssira, S. Abed, A. Mosbah, Thin Solid Films 515, 1494–1499 (2006)CrossRefGoogle Scholar
  18. 18.
    C. Prabukumar, M. Jayalakshmi, K. Udaya Bhat, Mater. Sci. Forum 830–831, 403–406 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Benramache, A. Arif, O. Belahssen, A. Guettaf, J. Nanostruct. Chem. 3, 80 (2013)CrossRefGoogle Scholar
  20. 20.
    J. Lv, C. Liu, W. Gong, Z. Zi, X. Chen, K. Huang, T. Wang, G. He, X. Song, Z. Sun, Superlattices Microstruct. 51, 886–892 (2012)CrossRefGoogle Scholar
  21. 21.
    M.B. Ortuno-Lopez, M. Sotelo-Lerma, A. Mendoza-Galvan, R. Ramirez-Bon, Vacuum 76, 181–184 (2004)CrossRefGoogle Scholar
  22. 22.
    N.K. Hassan, M.R. Hashim, J. Alloys Compd. 577, 491–497 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • C. Sneha
    • 1
  • C. Prabukumar
    • 1
  • M. Jayalakshmi
    • 1
  • K. Udaya Bhat
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology KarnatakaSurathkalIndia

Personalised recommendations