Facile synthesis of Cu2SnS3 thin films grown by SILAR method: effect of film thickness

  • Harshad D. Shelke
  • Abhishek C. Lokhande
  • Vanita S. Raut
  • Amar M. Patil
  • Jin H. Kim
  • Chandrakant D. Lokhande


Ternary Cu–Sn–S system, Cu2SnS3 (CTS) thin films have been successfully deposited via successive ionic layer adsorption and reaction (SILAR) method. The effect of film thickness on the structural, morphological, wettability and optical properties of CTS material is studied. The XRD studies confirm formation of triclinic (mohite) phase of CTS material. The SEM images show that entire film surface is covered by compact nearly spherical grains over growth of spongy clusters. The Brunauer-Emmett-Teller (BET) analysis revealed that the surface area of CTS material is 2.11 m2 g−1. The wettability study indicates hydrophilic nature of CTS samples. The optical band gap is decreased from 1.36 to 0.98 eV with increase in film thickness. The photoelectrochemical (PEC) study of CTS material shows anodic photocurrent indicating P-type electrical conductivity.


Power Conversion Efficiency Stainless Steel Substrate Deposition Cycle Increase Film Thickness Ethylenediaminetetraacetic Acid Disodium Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Present work was supported by the Human Resources Development program (No.20124010203180) of Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korea government Ministry. The basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (NRF2015R1A2A2A01006856).


  1. 1.
    J. Tang, S. Hinds, S. Kelley, E. Sargent, Chem. Mater. 20, 6906–6910 (2008)CrossRefGoogle Scholar
  2. 2.
    B. Shin, O. Gunawan, Y. Zhu, N. Bojarczuk, S. Chey, S. Guha, Prog. Photovolt Res. Appl. 21(1), 72–76 (2013)CrossRefGoogle Scholar
  3. 3.
    D. Barkhouse, O. Gunawan, T. Gokmen, T. Todorov, D. Mitzi, Prog. Photovolt Res. Appl. 20, 6–11 (2012)CrossRefGoogle Scholar
  4. 4.
    L. Baranowski, K. McLaughlin, P. Zawadzki, S. Lany, A. Norman, H. Hempel, R. Eichberger, T. Unold, E. Toberer, A. Zakutayev, Phys. Rev. Appli. 4, 044017(1)–044017(9) (2015)Google Scholar
  5. 5.
    M. Adelifard, M. Mohagheghi, H. Eshghi, Royal Swedish Acad. Sci. Physica Scripta 85, 035603–035608 (2012)CrossRefGoogle Scholar
  6. 6.
    P. Fernandes, P. Salome, A.D. Cunha, J. Phys. D Appl. Phys. 43, 1–11 (2010)CrossRefGoogle Scholar
  7. 7.
    Z. Tang, K. Kosaka, H. Uegaki, J. Chantana, Y. Nukui, D. Hironiwa, T. Minemoto, Phys. Status Solidi (A), 212, 2289–2296 (2015)CrossRefGoogle Scholar
  8. 8.
    N. Aihara, A. Kanai, K. Kimura, M. Yamada, K. Toyonaga, H. Araki, A. Takeuchi, H. Katagiri, J. Appl. Phys. 53, 08KC06(1)–08KC06(4) (2014)CrossRefGoogle Scholar
  9. 9.
    U. Chalapathi, Y. Jayasree, S. Uthanna, V. Sundararaja, Vacuum 117, 121–126 (2015)CrossRefGoogle Scholar
  10. 10.
    T. Reddy, R. Amiruddin, M. Santhoshkumar, Sol. Energy Mat. Sol. Cells 143, 128–134 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Miyata, S. Nakamura, Y. Akaki, Phys. Status Solidi (C), 12, 765–768 (2015)CrossRefGoogle Scholar
  12. 12.
    X. Chen, H. Wada, A. Sato, M. Mieno, J. Solid State Chem. 139, 144–151 (1998)CrossRefGoogle Scholar
  13. 13.
    R. Ettlinger, A. Cazzaniga, S. Canulescu, N. Pryds, J. Schou, Appl. Surf. Sci. 336, 385–390 (2015)CrossRefGoogle Scholar
  14. 14.
    S. Vanalakar, G. Agawane, A. Kamble, C. Hong, P. Patil, J. Kim, Sol. Energy Mat. Sol. Cells 138, 1–8 (2015)CrossRefGoogle Scholar
  15. 15.
    M. Nakashima, J. Fujimoto, T. Yamaguchi, M. Izaki, Appl. Phys. Express. 8, 04ES08(1)–04ES08(6) (2015)CrossRefGoogle Scholar
  16. 16.
    A. Crovetto, R. Chen, R. Ettlinger, A. Cazzaniga, J. Schou, C. Persson, O. Hansen, Sol. Energy Mater. Sol. Cells 154, 121–129 (2016)CrossRefGoogle Scholar
  17. 17.
    B. Taher, M. Alias, I. Naji, H. Alawadi, A. Douri, Aust. J. Basic Appl. Sci. 9, 406–411 (2015)Google Scholar
  18. 18.
    J. Han, Y. Zhou, Y. Tian, Z. Huang, X. Wang, J. Zhong, Z. Xia, B. Yong, H. Song, J. Tang, Front Optoelectron 7, 37 (2014)CrossRefGoogle Scholar
  19. 19.
    M. Shawky, A. Shenouda, El.. Said, I. Ibrahim, Int. J. Sci. Engg. Res. 6, 1447 (2015)Google Scholar
  20. 20.
    D. Berg, R. Djemour, L. Gutay, G. Zoppi, S. Siebentritt, P. Dale, Thin Solid Films 520, 6291–6294 (2012)CrossRefGoogle Scholar
  21. 21.
    Z. Su, K. Sun, Z. Han, F. Liu, Y. Lai, J. Li, Y. Liu, J. Mater. Chem. 22, 16346–16352 (2012)CrossRefGoogle Scholar
  22. 22.
    G. Ilari, C. Fella, C. Ziegler, A. Uhl, Y. Romanyuk, A. Tiwari, Sol. Energy Mat. Sol. Cells 104, 125–130 (2012)CrossRefGoogle Scholar
  23. 23.
    A.C. Lokhande, K.V. Gurav, Eunjin Jo, Mingrui He, C.D. Lokhande, Jin Hyeok Kim, Opt. Mater 54, 207–216 (2016)CrossRefGoogle Scholar
  24. 24.
    F. Chen, J. Zai, M. Xu, X. Qian, J. Mater. Chem. A1, 4316–4326 (2013)CrossRefGoogle Scholar
  25. 25.
    G. Hodes, Chemical Solution Deposition of Semiconductor Films. (Marcel Dekker, New York, 2005)Google Scholar
  26. 26.
    A. Lundin, G. Kitaev, Inorg. Mater. 1, 1900–1905 (1965)Google Scholar
  27. 27.
    S. Kahraman, M. Podlogar, S. Bernik, H. Guder, Metall. Mater. Trans. A. 45A, 2326–2334 (2014)CrossRefGoogle Scholar
  28. 28.
    R. Salunkhe, D. Dhawale, T. Gujar, C. Lokhande, Mater. Res. Bull. 46, 5009–5015 (2009)Google Scholar
  29. 29.
    V. Ashith, K. Rao, Thin Solid Films 616, 197–203 (2016)CrossRefGoogle Scholar
  30. 30.
    R.G. Pearson, Hard and soft acids and bases, HSAB, part1: fundamental principles, J. Chem. Educ. 45(9), 295–310 (1968)CrossRefGoogle Scholar
  31. 31.
    B. Strohmeier, D. Levden, R. Field, D. Hercules, J. Catal. 94, 2806–2808 (1985)CrossRefGoogle Scholar
  32. 32.
    R. Scheer, H. Lewerenz, J. Vac. Sci. Technol. A 12, 56–60 (1994)CrossRefGoogle Scholar
  33. 33.
    D. Tiwari, T. Chaudhuri, T. Shripathi, U. Deshpande, V. Sathe, Appl. Phys. A 117, 1139–1146 (2014)CrossRefGoogle Scholar
  34. 34.
    P. Grutsch, M. Zeller, T. Fehlner, Inorg. Chem. 12, 1431 (1976)CrossRefGoogle Scholar
  35. 35.
    A. Lokhande, K. Gurav, E. Jo, M. He, C. Lokhande, J. Kim, Opt. Mater. 54, 207–216 (2016)CrossRefGoogle Scholar
  36. 36.
    U. Jadhav, S. Patel, R. Patil, Res. J. Mater. Sci. 1, 21–25 (2013)Google Scholar
  37. 37.
    M. Saglam, A. Ateş, B. Guzeldir, O. Ozakın, Phys. Status Solidi (A), 209, 687–693 (2012)CrossRefGoogle Scholar
  38. 38.
    Y. Akaltun, M.A. Yıldırım, A. Ates, M. Yıldırım, Opt. Commun. 284, 2307–2311 (2011)CrossRefGoogle Scholar
  39. 39.
    A. More, J. Gunjkar, C. Lokhande, R. Mane, S. Han, Micron 38, 500–504 (2007)CrossRefGoogle Scholar
  40. 40.
    G. Palasantzas, J. Hosson, Acta Mater. 49, 3533–3538 (2001)CrossRefGoogle Scholar
  41. 41.
    K. Zhao, H. Cheng Adv. Mater. Sci. Eng., 203, 1–4 (2013)Google Scholar
  42. 42.
    Y. Chen, C. Chuang, K. Lin, S. Shen, C. McCleese, L. Guo, C. Burda, J. Phys. Chem. C 118, 11954–11963 (2014)CrossRefGoogle Scholar
  43. 43.
    D. Brion, Appl. Surf. Sci 5, 133–152 (1980)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Harshad D. Shelke
    • 1
  • Abhishek C. Lokhande
    • 2
  • Vanita S. Raut
    • 1
  • Amar M. Patil
    • 1
  • Jin H. Kim
    • 2
  • Chandrakant D. Lokhande
    • 1
    • 3
  1. 1.Thin Film Physics Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  2. 2.Optoelectronic Convergence Research Centre, Department of Materials Science and EngineeringChonnam National UniversityGwangjuSouth Korea
  3. 3.Centre for Interdisciplinary ResearchD. Y. Patil UniversityKolhapurIndia

Personalised recommendations