Co(OH)2 nanoflakes grown on 3D graphene foam as a binder-free hybrid electrode for high-performance supercapacitors

  • Tong Yin
  • Wenkang Zhang
  • Yaolong Yin
  • Ya Yan
  • Ke Zhan
  • Junhe Yang
  • Bin Zhao


Using a simple hydrothermal method, porous Co(OH)2 nanoflakes were successfully deposited on 3D graphene foam grown by chemical vapor deposition. And the Co(OH)2/3D graphene hybrids were then employed as the binder-free electrode for supercapacitors. Structure and morphology of the hybrid materials were investigated and effect of hydrothermal temperature on electrochemical performance was optimized. The 90 °C-synthesized sample exhibits the highest specific capacitance of 1636 F/g at 0.5 A/g in the KOH electrolyte. Even as the current density increases 120 times to 60 A/g, the specific capacitance of 1180 F/g is still maintained, representing the excellent rate capability. The hybrid electrode also shows good cycling stability with capacity retention of 75% after 1000 cycles. The excellent electrochemical performance of the hybrid electrode is attributed to synergistic effect of the highly conductive graphene and the nano-porous Co(OH)2.


Foam Specific Capacitance Electrochemical Performance Cyclic Voltammetry Curve High Specific Capacitance 



This work was supported by the National Natural Science Foundation of China (51605293) and Natural Science Foundation of Shanghai (16ZR1423500). The authors also acknowledge financial supported from The Program for Associate Professor of Special Appointment (Young Eastern Scholar) at Shanghai Institutions of Higher Learning (QD2016013).


  1. 1.
    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)CrossRefGoogle Scholar
  2. 2.
    J. Cheng, B. Zhao, W. Zhang, F. Shi, G. Zheng, D. Zhang, J. Yang, Adv. Funct. Mater. 25, 7381–7391 (2015)CrossRefGoogle Scholar
  3. 3.
    Z.Y. Huang, Z. Zhang, X. Qi, X.H. Ren, G.H. Xu, P.B. Wan, X.M. Sun, H. Zhang, Nanoscale 8, 13273–13279 (2016)CrossRefGoogle Scholar
  4. 4.
    Y. Wang, Y. Xia, Adv. Mater. 25, 5336–5342 (2013)CrossRefGoogle Scholar
  5. 5.
    L. Shen, J. Wang, G. Xu, H. Li, H. Dou and X. Zhang, Adv. Energy Mater. 5(1–7), 1400977 (2015)CrossRefGoogle Scholar
  6. 6.
    Z. Zhang, Z.Y. Huang, L. Ren, Y.Z. Shen, X. Qi, J.X. Zhong, Electrochim. Acta 149, 316–323 (2014)CrossRefGoogle Scholar
  7. 7.
    J. Yan, Q. Wang, T. Wei, Z. Fan, Adv. Energy Mater. 4(1–43), 1300816 (2014)Google Scholar
  8. 8.
    J.K. Chang, C.M. Wu, I.W. Sun, J. Mater. Chem. 20, 3729–3735 (2010)CrossRefGoogle Scholar
  9. 9.
    X.H. Xia, J.P. Tu, Y.Q. Zhang, Y.J. Mai, X.L. Wang, C.D. Gu, X.B. Zhao, J. Phys. Chem. C 115, 22662–22668 (2011)CrossRefGoogle Scholar
  10. 10.
    U.M. Patil, M.S. Nam, J.S. Sohn, S.B. Kulkarni, R. Shin, S. Kang, S. Lee, J.H. Kim, S.C. Jun, J. Mater. Chem. A 2, 19075–19083 (2014)CrossRefGoogle Scholar
  11. 11.
    C. Jiang, B. Zhao, J. Cheng, J. Li, H. Zhang, Z. Tang, J. Yang, Electrochim. Acta 173, 399–407 (2015)CrossRefGoogle Scholar
  12. 12.
    Z. Mingjia, X. Chengcheng, L. Jiangtian, L. Ming, W. Niangiang, Nanoscale 5, 72–88 (2013)CrossRefGoogle Scholar
  13. 13.
    R. Della Noce, S. Eugénio, T.M. Silva, M.J. Carmezim, M.F. Montemor, J. Power Sources 288, 234–242 (2015)CrossRefGoogle Scholar
  14. 14.
    X. H. Cao, Z. Y. Yin and H. Zhang, Energy Environ. Sci. 7, 1850–1865(2014)CrossRefGoogle Scholar
  15. 15.
    U. Patil, S.C. Lee, S. Kulkarni, J.S. Sohn, M.S. Nam, S. Han, S.C. Jun, Nanoscale 7, 6999–7021 (2015)CrossRefGoogle Scholar
  16. 16.
    Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H. Cheng, Nat. Mater. 10, 424–428 (2011)CrossRefGoogle Scholar
  17. 17.
    X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan Park, H. Zhang, L.H. Wang, W. Huang, P. Chen, ACS Nano 6, 3206–3213 (2012)CrossRefGoogle Scholar
  18. 18.
    J.P. Cheng, L. Liu, J. Zhang, F. Liu, X.B. Zhang, J. Electroanal. Chem. 722–723, 23–31 (2014)CrossRefGoogle Scholar
  19. 19.
    Z. Liu, R. Ma, M. Osada, K. Takada, T. Sasaki, J. Am. Chem. Soc. 127, 13869–13874 (2005)CrossRefGoogle Scholar
  20. 20.
    L. Wang, Z.H. Dong, Z.G. Wang, F.X. Zhang, J. Jin, Adv. Funct. Mater. 23, 2758–2764 (2013)CrossRefGoogle Scholar
  21. 21.
    H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong and G. W. Yang, Nat. Commun. 4, 1894 (2013)CrossRefGoogle Scholar
  22. 22.
    A.D. Jagadale, V.S. Kumbhar, D.S. Dhawale, C.D. Lokhande, Electrochim. Acta 98, 32–38 (2013)CrossRefGoogle Scholar
  23. 23.
    Q. Wang, B. Liu, X. Wang, S. Ran, L. Wang, D. Chen, G. Shen, J. Mater. Chem. 22, 21647–21653 (2012)CrossRefGoogle Scholar
  24. 24.
    C. Wang, J. Xu, M.F. Yuen, J. Zhang, Y. Li, X. Chen, W. Zhang, Adv. Funct. Mater. 24, 6372–6380 (2014)CrossRefGoogle Scholar
  25. 25.
    G.X. Pan, X. Xia, F. Cao, P.S. Tang, H.F. Chen, Electrochim. Acta 63, 335–340 (2012)CrossRefGoogle Scholar
  26. 26.
    C. Zhao, X. Wang, S. Wang, Y. Wang, Y. Zhao, W. Zheng, Int. J. Hydrogen Energy 37, 11846–11852 (2012)CrossRefGoogle Scholar
  27. 27.
    J. Jiang, J. Liu, R. Ding, J. Zhu, Y. Li, A. Hu, X. Li and X. Huang, ACS Appl. Mater. Inter. 3, 99–103 (2011)CrossRefGoogle Scholar
  28. 28.
    J. P. Cheng, L. Liu, K. Y. Ma, X. Wang, Q. Q. Li, J. S. Wu and F. Liu, J. Colliod Interf. Sci. 486, 344–350(2017)CrossRefGoogle Scholar
  29. 29.
    C. Mondal, D. Ghosh, M. Ganguly, A.K. Sasmal, A. Roy, T. Pal, Appl. Surf. Sci 359, 500–507 (2015)CrossRefGoogle Scholar
  30. 30.
    H. Yan, J. Bai, B. Wang, L. Yu, L. Zhao, J. Wang, Q. Liu, J. Liu, Z. Li, Electrochim. Acta 154, 9–16 (2015)CrossRefGoogle Scholar
  31. 31.
    J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, ACS Nano 7, 6237–6243 (2013)CrossRefGoogle Scholar
  32. 32.
    A. Ramadoss, S.J. Kim, Carbon 63, 434–445 (2013)CrossRefGoogle Scholar
  33. 33.
    Z. Zhang, X. Liu, X. Qi, Z. Huang, L. Ren, J. Zhong, RSC Adv. 4, 37278–37283 (2014)CrossRefGoogle Scholar
  34. 34.
    Z. Zhang, L. Ren, W. Han, L. Meng, X. Wei, X. Qi, J. Zhong, Ceram. Int. 41, 4374–4380 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Tong Yin
    • 1
  • Wenkang Zhang
    • 1
  • Yaolong Yin
    • 1
  • Ya Yan
    • 1
  • Ke Zhan
    • 1
  • Junhe Yang
    • 1
  • Bin Zhao
    • 1
  1. 1.School of Materials Science & EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina

Personalised recommendations