Synthesis of Cu2FeSnS4 thin films with stannite and wurtzite structure directly on glass substrates via the solvothermal method

  • Haijun Hou
  • Hao Guan
  • Lei Li


Stannite and wurtzite Cu2FeSnS4 (CFTS) thin films were synthesized directly on glass substrates via the solvothermal method firstly. The solvent plays an important role in the formation and morphologies of two different CFTS phases. X-ray diffraction, Raman spectroscopy, scanning electron microscopy, UV–Vis–NIR absorbance spectroscopy measurement and Hall effect measurement show that the surface of stannite CFTS thin film is covered with large numbers of irregular particles while wurtzite CFTS thin film exhibits sphere-like particles. The stannite and wurtzite CFTS thin films show that the carrier concerntration is in the range of 1018cm−3 and carrier mobility of about 4.602–21.98 cm−2 v−1 s−1. The band gaps of stannite and wurtzite CFTS thin films are determined to 1.3 and 1.34 eV, repectively, which are suitable as a substitute for thin film solar cells.


Glass Substrate Wurtzite Wurtzite Structure Solvothermal Method Thin Film Solar Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is financial supported by the National Natural Science Foundation of China (No.51402251).


  1. 1.
    P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Prog. Photovolt. 19, 894–897 (2011)CrossRefGoogle Scholar
  2. 2.
    B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Prog. Photovolt. 21, 72–76 (2013)CrossRefGoogle Scholar
  3. 3.
    T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, D.B. Mitzi, Adv. Energy. Mater. 3, 34–38 (2013)CrossRefGoogle Scholar
  4. 4.
    X.Y. Zhang, N.Z. Bao, K. Ramasamy, Y.H.A. Wang, Y.F. Wang, B.P. Lin, A. Gupta, Chem. Commun. 48, 4956–4958 (2012)CrossRefGoogle Scholar
  5. 5.
    L. Li, X.Y. Liu, J. Huang, M. Cao, S.Y. Chen, Y. Shen, L.J. Wang, Mater. Chem. Phys. 133, 688–691 (2012)CrossRefGoogle Scholar
  6. 6.
    C. Yan, C. Huang, J. Yang, F.Y. Liu, J. Liu, Y.Q. Lai, J. Li, Y.X. Liu, Chem. Commun. 48, 2603–2605 (2012)CrossRefGoogle Scholar
  7. 7.
    X. Jiang, W. Xu, R.Q. Tan, W.J.M. Song, J. Chen, Mater. Lett. 102–103, 39–42 (2013)CrossRefGoogle Scholar
  8. 8.
    J.S. Zhong, Q.Y. Wang, D.Q. Chen, L.F. Chen, H. Yu, H.W. Lu, Z.G. Ji, Appl. Surf. Sci. 343, 28–32 (2015)CrossRefGoogle Scholar
  9. 9.
    M. Cao, C. Li, B.L. Zhang, J. Huang, L.J. Wang, Y. Shen, J. Alloys Compd. 622, 695–702 (2015)CrossRefGoogle Scholar
  10. 10.
    L.H. Ai, J. Jiang, Nanotechnology 23, 495601–495609 (2012)CrossRefGoogle Scholar
  11. 11.
    W. Wang, H.L. Shen, H.Y. Yao, J.Z. Li, Mater. Lett 125, 183–186 (2014)CrossRefGoogle Scholar
  12. 12.
    Z. Gui, R. Fan, X.H. Chen, Y. Hu, Z.Z. Wang, Mater. Res. Bull. 39, 237–241 (2004)CrossRefGoogle Scholar
  13. 13.
    X. Fontané, V. Izquierdo-Roca, E. Saucedo, S. Schorr, V.O. Yukhymchuk, M.Y. Valakh, J.R. Morante, J. Alloys Compd. 539, 190–194 (2012)CrossRefGoogle Scholar
  14. 14.
    H. Guan, H.L. Shen, B.X Jiao, X. Wang, Mater. Sci. Semicond. Process 25, 159–162 (2014)CrossRefGoogle Scholar
  15. 15.
    D.B. Khadka, J.H. Kim, J. Phys. Chem. C 118, 14227–14237 (2014)CrossRefGoogle Scholar
  16. 16.
    X. Fontane, V. Izquierdo-Roca, E. Saucedo, S. Schorr, V.O. Yukhymchuk, M.Y. Valakh, A. Perez-Rodriguez, J.R. Morante, J. Alloys Compd. 539, 190–194 (2012)CrossRefGoogle Scholar
  17. 17.
    D.B. Khadka, J. Kim, J. Alloys Compd. 638, 103–108 (2015)CrossRefGoogle Scholar
  18. 18.
    S.Y. Chen, A. Walsh, Y. Luo, J.H. Yang, X.G. Gong, S.H. Wei, Phys. Rev. B 82, 195203 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Materials EngineeringYancheng Institute of TechnologyYanchengPeople’s Republic of China

Personalised recommendations