Structural, optical and magnetic properties of SnO2 quantum dot

  • E. Thamarai Selvi
  • S. Meenakshi Sundar
  • P. Selvakumar
  • P. M. Ponnusamy


High crystalline rutile nano sized tin oxide SnO2 nanoparticles have been synthesized by microwave irradiation technique with the assistance of Cetyl Tributyl Ammonium Bromide (CTAB). The addition of surfactant CTAB resulted in a strong variation of particle size. The presence of CTAB during the solvothermal synthesis considerably affects the morphology, band gap, fluorescence emission and magnetic property. The X-ray diffraction patterns reveal pure rutile-type tetragonal phase SnO2 nanoparticles. The transmission electron microscopy result shows the formation of spherical shaped SnO2 quantum dots of size about 4 nm. Noticeable morphological changes were observed by scanning electron microscopy. The functional groups were analyzed using Fourier Transform Infrared Spectroscopy studies. Optical studies were carried by UV–Visible Spectroscopy and Fluorescence Spectroscopy. Electron Paramagnetic resonance was used to calculate the Lande splitting factor ‘g’. The magnetic properties of the nanoparticles were studied by using Vibrating Sample Magnetometer.


Electron Paramagnetic Resonance SnO2 Full Width Half Maximum SnO2 Nanoparticles Electron Paramagnetic Resonance Signal Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L.C. Nehru, V. Swaminathan, C. Sanjeeviraja, Am. J. Mat. Sci. 2(2), 6–10 (2012)CrossRefGoogle Scholar
  2. 2.
    Arham S. Ahmed, Shafeeq M. Muhammad, M. L. Singla, Sartaj Tabassum, H. Alim Naqvi, Ameer Azam. J. Lumin. 131, 1–6 (2011)CrossRefGoogle Scholar
  3. 3.
    Kiran Jain, ECS Abhilash Srivastava Rashmi, Transactions, 1(21), 1–7 (2006)Google Scholar
  4. 4.
    Chengxiang Wang, Longwei Yin, Luyuan Zhang, Dong Xiang, Rui Gao, Sensors, 10 (3), 2088–2106 (2010)CrossRefGoogle Scholar
  5. 5.
    M.I. Salwa Morsy, Int. J. Curr. Microbiol. App. Sci. 3(5), 237–260 (2014)Google Scholar
  6. 6.
    Thanh-DinhNguyen, Trong-On Do, Nanotechnology and Nanomaterials, Nanocrystal, (2011). doi:  10.5772/703 Google Scholar
  7. 7.
    Ghassan E. Jabbour, David Doderer, Nat. Photonics 4, 604–605 (2010)CrossRefGoogle Scholar
  8. 8.
    V. Bonu, A. Das, S. Amirthapandian, S. Dhara, A. K. Tyagi, Phy. Chem. Chem. Phy. 17, 9794 (2015)CrossRefGoogle Scholar
  9. 9.
    Ashok K. Singh, Umesh T. Nakate, Adv. Nanoparticles 2, 66–70 (2013)CrossRefGoogle Scholar
  10. 10.
    Satnam Singh, Dheeraj Gupta, Vivek Jain, Apurbba K. Sharma, Mat. Manuf. Process., 30(1), 1–29 (2015)CrossRefGoogle Scholar
  11. 11.
    Lin Tan, Lihong Wang, Yude Wang, J. Nanomater. 2011, 1–10 (2011)CrossRefGoogle Scholar
  12. 12.
    J. Tauc, Amorphous and Liquid Semiconductors, (Plenum Press, New York, 1974)CrossRefGoogle Scholar
  13. 13.
    Junpeng Wang, Zeyan Wang, Baibiao Huang, Ma Yandong, Yuanyuan Liu, Xiaoyan Qin, Xiaoyang Zhang, Ying Dai, ACS Appl. Mater. Interfaces 4, 4024–4030 (2012)CrossRefGoogle Scholar
  14. 14.
    S. Chacko, M.J. Bushiri, V.K. Vaidyan, J. Phys. D 39, 4540 (2006)CrossRefGoogle Scholar
  15. 15.
    Xiaochun Wu, Bingsuo Zou, Jiren Xu, Baolong Yut, Guoqing Tang, Guilan Zhangf, Wenju Chenf, Nanostructured Mater. 8(2), 179–189 (1997)CrossRefGoogle Scholar
  16. 16.
    K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, J. App. Phy. 79, 7983 (1996)CrossRefGoogle Scholar
  17. 17.
    W. Zhu, W. Wang, H. Xu, J. Shi, Mater. Chem. Phys. 99, 127–130 (2006)CrossRefGoogle Scholar
  18. 18.
    C. Kilic, A. Zunger, Phys. Rev. Let. 88, 095501(2002)CrossRefGoogle Scholar
  19. 19.
    A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Phys. Rev. B 74 161306 (2006).CrossRefGoogle Scholar
  20. 20.
    A. Kar, S. Kundu, A. Patra. J. Phys. Chem. C 118, 115 (2011)Google Scholar
  21. 21.
    X. Liu, J. Iqbal, Z. Wu, B. He, R. Yu, J. Phys. Chem. C 4790, 014303 (2010)Google Scholar
  22. 22.
    S. Luo, P.K. Chu, W. Liu, M. Zhang, C. Lin, X. Wu, Appl. Phys. Let. 88, 183112 (2006)CrossRefGoogle Scholar
  23. 23.
    Gobinda Gopal Khan, S. Ghosh, Kalyan Mandal. J. Solid State Chem. 186, 278–282 (2012)CrossRefGoogle Scholar
  24. 24.
    N. Ozcan, T. Kortelainen, V. Golovanov, T.T. Rantala, J. Varra, Phys. Rev. B 81, 235202 (2010)CrossRefGoogle Scholar
  25. 25.
    D.A. Popescu, J.M. Herrman, A. Ensuque, F. Bozon-Verduraz, Phys. Chem. Chem. Phys. 3, 2522 (2001)CrossRefGoogle Scholar
  26. 26.
    A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Phys. Rev. B 74(16), 161306 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • E. Thamarai Selvi
    • 1
  • S. Meenakshi Sundar
    • 1
  • P. Selvakumar
    • 2
  • P. M. Ponnusamy
    • 2
  1. 1.PG and Research Department of PhysicsSri Paramakalyani CollegeAzhwarkurichiIndia
  2. 2.Department of PhysicsCoimbatore Institute of TechnologyCoimbatoreIndia

Personalised recommendations