Fabrication of Al deposited sandwich capacitor structure with CdSe/PVA dielectric thin film by spin coating technique for high power applications: synthesis and characterizations

  • Jobin Job Mathen
  • Ajith Thomas
  • Augustine J. Edakkara
  • Jose Sebastian
  • J. Madhavan
  • Ginson P. Joseph


The capacitor structures were fabricated in the configuration of Al : CdSe/PVA : Al with CdSe/PVA as an insulating dielectric layer for high power applications. The sandwiched layer gave an excellent energy density and a better dielectric strength that was obtained from the amalgamation of CdSe and poly (vinyl alcohol). For the detailed analysis of the interaction between CdSe and PVA, transparent CdSe/PVA composites were synthesized by ultra-sonication technique with micrometer thicknesses at different wt% of CdSe. The UV absorption edge of PVA matrix corresponds to π→π* transition associated with ethylene unsaturation (C=C) was analysed and it was shifted towards higher wavelength with the CdSe incorporation. The sub-band states formation was evaluated, Urbach energy was increased up to ~835 meV, and an increase in structural defect was noticed by widening the tail state within the polymer matrix with the impurity addition. Optical parameters which include extinction coefficient (k) and index of refraction (n) have been determined. Three dielectric relaxations were pronounced as α, β and interfacial polarization and the high relative permittivity and the low values of dissipation factor indicated that the dielectric phenomenon was predominant in all membranes. Inspection of electrical conduction rate to temperatures was also investigated and the temperature coefficient of capacitance and temperature coefficient of permittivity were listed. Thermal stability could be enhanced with CdSe interaction and the variation in thermal parameters was discussed.


Composite Film Composite Membrane Breakdown Strength CdSe Nanoparticles Urbach Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors acknowledges Science and Engineering Research Board, Department of Science and Technology, Government of India, for funding this research project.


  1. 1.
    W.J. Sarjeent, F.W. MacDougali, Capacitors for high power electronics. IEEE Annual Report D. Conference on Electrical Insulation and Dielectric Phenomena. IEEE. Dielectrics and Electrical Insulation Society 1, 113–120 (1997)Google Scholar
  2. 2.
    B. Chu, X. Zhou, B. Neese, Q. M. Zhang, F. Bauer, Relaxor ferroelectronic polymer-poly(vinylidenefluoride-trifluoroethylene-chlorofluoroethylene) terpolymer high electric energy density and field dependent dielectric response. Ferroelectrics 331, 35 (2006)CrossRefGoogle Scholar
  3. 3.
    T.J. Lewis, Interfaces: nanometric dielectrics. J. Phys. D 38(2), 202–212 (2005)CrossRefGoogle Scholar
  4. 4.
    T.J. Lewis, Interfaces are the dominant features of dielectrics at the nanometric level. IEEE Trans. Dielectr. Electr Insul. 11(5), 739–753 (2004)CrossRefGoogle Scholar
  5. 5.
    Y. Sun, Z. Zhang, C.P. Wong, Influence of interphase and moisture on the dielectric spectroscopy of epoxy/silica composites. Polymer 46, 2297–2305 (2005)CrossRefGoogle Scholar
  6. 6.
    E. Tuncer, A.J. Rondinone, J. Woodward, I. Sauers, D.R. James, A.R. Ellis, Cobalt iron-oxide nanoparticle modified poly(methyl methacrylate) nanodielectrics. Appl. Phys. A 94, 843–852 (2009)CrossRefGoogle Scholar
  7. 7.
    J. Lu, K.S. Moon, J. Xu, C.P. Wong, Synthesis and dielectric properties of novel high-K composites containing in-situ formed for embedded capacitor applications. J. Mater. Chem. 16(16), 1543–1548 (2006). doi: 10.1039/B514182F CrossRefGoogle Scholar
  8. 8.
    A. Schneuwly, P. Groning, L. Schlapbach, C. Irrang, J. Vogt, Breakdown behaviour of oil- impregnated polyproplyene as dielectric in film capacitors. IEEE Dielectr. Electr. Insul. 5, 862–868 (1998)CrossRefGoogle Scholar
  9. 9.
    Q. Feng, Z. Dang, N. Li, X. Cao, Preparation and dielectric property of Ag/PVA nano-composite. Mater. Sci. Eng. B 99, 325–328 (2003)CrossRefGoogle Scholar
  10. 10.
    S. Sugumaran, C.S. Bellan, D. Muthu, S. Raja, D. Bheeman, R. Rajamani, Novel hybrid PVA–InZnO transparent thin films and sandwich capacitor structure by dip coating method: preparation and characterization. RSC Adv. 5(14), 10599–10610 (2015)Google Scholar
  11. 11.
    A.M.K. Aippunny,, S.M. Shamsudeen, P. Valparambil, S. Mathew, U.N. Vishwambharan, Freestanding Ag2S/CuS PVA films with improved dielectric properties for organic electronics. J. Appl. Polym. Sci. 133, 43568 (2016). doi: 10.1002/app.43568 CrossRefGoogle Scholar
  12. 12.
    R. Abargues, J. Marqu_es-Hueso, J. Canet-Ferrer, E. Pedrueza, J.L. Valdes, E. Jimenez, J. Martinez-Pastor, High resolution electron beam pattern able containing metal nanoparticles for plasmonics. Nanotechnology 19, 355308–355312 (2008)CrossRefGoogle Scholar
  13. 13.
    R. Abargues, R. Gradess, J. Canet-Ferrer, K. Abderrafi, J.L. Valdes, J. Martinez Pastor, Scalable heterogeneous synthesis of metallic nanoparticles and aggregates with polyvinyl alcohol. New J. Chem. 33, 913–917 (2009)CrossRefGoogle Scholar
  14. 14.
    S. Porel, S. Singh, S.S. Harsha, D.N. Rao, T.P. Radhakrishnan, Nanoparticle-embedded polymer, in situ synthesis, free standing films with highly monodisperse silver nanoparticles and optical limiting. Chem. Mater 17, 9–12 (2005)CrossRefGoogle Scholar
  15. 15.
    M. Egginger, R. Schwoediauer. Analysis of mobile ionic impurities in polyvinylalcohol thin films by thermal discharge current and dielectric impedance spectroscopy. AIP Adv. 2 042152 (2012)CrossRefGoogle Scholar
  16. 16.
    T.J. Lewis, Nanometric dielectrics. IEEE. Trans. Dielect. Electr. Insul. 1(5), 812–825 (1994)CrossRefGoogle Scholar
  17. 17.
    X. Xu, Y. Wang, L. Zhor, L. Wu, J.G. Niu, L. Zhang, Q. Liu, Syntheis and characterization of CdSe nanocrystals using NaHSeO3 as selenium source. Micro Nanolett. 7(6), 589–591 (2012)Google Scholar
  18. 18.
    P.K. Khanna, Synthesis and optical properties of CdSe nanocrystal. J. Taylor Francis (2008). doi:  10.1088/2043-6254/1/2/025004 Google Scholar
  19. 19.
    W. Xu, Y. Wang, S. Liang, R. Xu, G. Zhang, F. Xu, D. Yin, Optimized synthesis and fluorescence spectrum analysis of CdSe quantum dots. J. Disper Sci Technol. 29, 953–957 (2008) doi:  10.1080/01932690701808411 CrossRefGoogle Scholar
  20. 20.
    G.A. Kontos, A.L. Soulintzis, P.K. Karahaliou, G.C. Psarras, S.N. Georga, C.A. Krontiras et al., Electrical relaxation dynamics in TiO2—polymer matrix composites. Express Polym. Lett. 1(12), 781–789 (2007)CrossRefGoogle Scholar
  21. 21.
    A.L. Soulintzis, G.A. Kontos, P.K. Karahaliou, G.C. Psarras, S.N. Georga, C.A. Krontiras, Dielectric relaxation processes in epoxy resin-ZnO composites. J. Polym. Sci. Polym. Phys. 47(4), 445–454 (2009)CrossRefGoogle Scholar
  22. 22.
    G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Dielectric dispersion and ac conductivity in-iron particles loaded-polymer composites. Compos. Part A 34(12), 1187–1198 (2003)CrossRefGoogle Scholar
  23. 23.
    L.A. Ramajo, A.A. Cristobal, P.M. Botta, J.M. Porto Lopez, M.M. Reboredo, M.S. Castro, Dielectric and magnetic response of Fe3O4/epoxy composites. Compos. Part A 40(4), 388–393 (2009)CrossRefGoogle Scholar
  24. 24.
    W.H. Eisa, Y.K. Abdel-Moneam, Y. Shaaban, A.A. Abdel-Fattah, A.M.A. Zeid, Gamma-irradiation assisted seeded growth of Ag nanoparticles within PVA matrix. Mater. Chem. Phys. 128, 109–113 (2011)CrossRefGoogle Scholar
  25. 25.
    K.E. Strawhecker, E. Manias, Structure and properties of poly(vinyl alcohol)/Na + montmorillonite nanocomposites. Chem. Mater. 12(10), 2943–2949 (2000)CrossRefGoogle Scholar
  26. 26.
    S. Mahajan, M. Rani, R.B. Dubey, J. Mahajan, Characteristics and properties of CdSe quantum dots. Int. J. Latest Res. Sci. Technol. 2, 457–459 (2013)Google Scholar
  27. 27.
    H. Kanarlou, S. Rafizadeh, Investigation of optical and structural properties of titanium very thin film layers under neat process. Aust. J. Basic. Appl. Sci. 5, 1182–1187 (2011)Google Scholar
  28. 28.
    D. Saika, P.K. Saika, P.K. Gogoi, P. Saika, Synthesis, characterization and photovoltaic application of silver doped CdS/PVA nanocomposite thin films. Dig. J. Nanomater. Biostruct. 6, 589–597 (2011)Google Scholar
  29. 29.
    A. Lagashetty, V. Havanoor, S. Basavaraja, A. Vengataraman, Synthesis of MoO3 and its polyvinyl alcohol nanostructured film. Bull. Mater. Sci. 28, 477–481 (2005)CrossRefGoogle Scholar
  30. 30.
    S. Sugumaran, C.S. Bellan, Transparent nano composite PVA–TiO2 and PMMA–TiO2 thin films: optical and dielectric properties. Optik 125, 5128–5133 (2014)CrossRefGoogle Scholar
  31. 31.
    G.C. Psarras, Hopping conductivity in polymer matrix-metal particles composites. Compos. Part A 37(10), 1545–1553 (2006)CrossRefGoogle Scholar
  32. 32.
    R.W. Sillars, The properties of a dielectric containing semiconducting particles of various shapes. J. Inst. Electr. Engrs. 80(484), 378–394 (1937)Google Scholar
  33. 33.
    M.J. Alam, D.C. Cameron, Preparation and characterization of TiO2 thin films by sol gel method. J. Sol–Gel. Sci. Technol. 25, 137–145 (2002)CrossRefGoogle Scholar
  34. 34.
    Y.J. Hsiao, Y.S. Chang, High dielectric permittivity of Li and Ta doped NiO ceramics. J. Phys. D 40, 863–868 (2007)CrossRefGoogle Scholar
  35. 35.
    M.H. An, Composition, structural and electrical configurations on dc-magnetron sputtered TiO2 thin films. J. Korean Phys. Soc. 47, 847–851 (2005)Google Scholar
  36. 36.
    J. Park, J.W. Lee, D.W. Kim, B.J. Park, H.J. Choi, J.S. Choi, Pentacene thin film transistor with poly (methyl metha acrylate-co-methacrylic acid)/ TiO2 nano composite gate insulator. Thin Solid Films 518, 588–590 (2009)CrossRefGoogle Scholar
  37. 37.
    F.C. Chen, C.W. Chu, J. He, Y. Yang, Organic thin-film transistor with nano composite dielectric gate insulator. Appl. Phys. Lett. 85, 3295–3297 (2004)CrossRefGoogle Scholar
  38. 38.
    B.J. Park, J.H. Park, J.S. Choi, H.J. Choi, Layer-by-layer structured polymer/ TiO2 thin film and its gate dielectric application. J. Nanosci. Nanotechnol. 10(7), 4758–4761 (2010)CrossRefGoogle Scholar
  39. 39.
    J. Puigdollers, C. Voz, A. Orpella, R. Quidant, I. Martin, M. Vetter, R. Alcubilla, Pentacene thin-film transistors with polymeric gate dielectric. Org. Electron. 5(1), 67–71 (2004)CrossRefGoogle Scholar
  40. 40.
    M.H. Jung, H. Handa, T. Takahashi, H. Fukidome, T. Suemitsu, T. Otsuji, M. Suemitsu, Polymer materials as gate dielectric for graphene field-effect-transistor applications. Jpn. J. Appl. Phys. 50, 70107–70111 (2011)CrossRefGoogle Scholar
  41. 41.
    A. Schonnals, in Dielectric Properties of Amorphous Polymers, ed. by J.P. Runt, J.J. Fitzgerald. Dielectric Spectroscopy of Polymeric Materials. Fundamentals and Applications, (American Chemical Society, Washington 1997)Google Scholar
  42. 42.
    M. Hernandez, T.A. Ezquerra, R. Verdejo, M.A. Lopez-Manchado, Role of vulcanizing additives on the segmental dynamics of natural rubber. Macromolecules 45(2), 1070–1075 (2012)CrossRefGoogle Scholar
  43. 43.
    P. Hedvig, Dielectric Spectroscopy of Polymers. (Adam Hilger, Bristol, 1977)Google Scholar
  44. 44.
    A.K. Jonscher, The universal dielectric response, Nature 267, 673–679 (1977)CrossRefGoogle Scholar
  45. 45.
    K. Jonscher, A new understanding of the dielectric relaxation of solids. J. Mater. Sci. 16(8), 2037–2060 (1981)CrossRefGoogle Scholar
  46. 46.
    I. Balberg, D. Azulay, D. Toker, O. Millo, Percolation and tunneling in composite materials. Int. J. Mod. Phys. B 18(15), 2091–2121 (2004)CrossRefGoogle Scholar
  47. 47.
    L. Cheng, L. Zheng, G. Li, J. Zeng, Q. Yin, Influence of particle surface properties on the dielectric behaviour of silica/epoxy nanocomposites. Physica B 403(17), 2584–2589 (2008)CrossRefGoogle Scholar
  48. 48.
    M. Roy, J.K. Nelson, R.K. MacCrone, L.S. Schadler, Polymer nanocomposite dielectrics—the role of the interface. IEEE Trans. Dielect. Electr. Insul. 12(4), 629–643 (2005)CrossRefGoogle Scholar
  49. 49.
    K.A.M. Abd El-Kader, S.F. AbdelHamied, Preparation of poly(vinyl alcohol) films with promising physical properties in comparison with commercial polyethylene film. J. Appl. Polym. Sci. 86, 1219–1226 (2002)CrossRefGoogle Scholar
  50. 50.
    R. Jayasekara, I. Harding, I. Bowater, G.B.Y. Christie, G.T. Lonergan, Preparation, surface modification and characterization of solution cast starch PVA blended films. Polym. Test. 23, 17–27 (2004)CrossRefGoogle Scholar
  51. 51.
    F. Urbach, The-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)CrossRefGoogle Scholar
  52. 52.
    W. Xu, C. Liu, X. Xue, Y. Su, Y. Lv, W. Xing, T. Lu, New proton exchange membranes based on poly(vinyl alcohol) for DMFCs. Solid State Ionics 171(1–2), 121–127 (2004)CrossRefGoogle Scholar
  53. 53.
    C. Yang, S.J. Lin, Polymer Ni-MH battery based on PEO-PVA-KOH polymer electrolyte. J. Power Sour. 109, 22–31 (2002)CrossRefGoogle Scholar
  54. 54.
    C. Zou, J.C. Fothergill and S.W. Rowe. A Water Shell Model for the Dielectric Properties of Hydrated Silica-filled Epoxy Nano-composites. IEEE International Conference On Solid Dielectrics (ICSD). pp. 325–328, 2006.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jobin Job Mathen
    • 1
  • Ajith Thomas
    • 2
  • Augustine J. Edakkara
    • 2
  • Jose Sebastian
    • 3
  • J. Madhavan
    • 1
  • Ginson P. Joseph
    • 2
  1. 1.Department of PhysicsLoyola CollegeChennaiIndia
  2. 2.Department of PhysicsSt. Thomas CollegePalaIndia
  3. 3.Department of Polymer ScienceUniversity College of EngineeringThodupuzhaIndia

Personalised recommendations