Advertisement

Pt/Fe/NiO on CNT/CP substrate as a possible electrode of nano chip devices

  • Hajar Rajaei Litkohi
  • Ali Bahari
  • Reza Ojani
Article

Abstract

In the present work, PtFeNiO/CNT/CP electrode was prepared with ethylene glycol reduction process. Growth of interconnected CNTs on the CP surface, surface morphology and degree of hydrophobicity were studied with Field emission scanning electron microscopy, Energy dispersive spectroscopy, Transmission electron microscopy, Thermal gravimetric analysis and Contact angle techniques. Polarization, P–I (power density–current density) curves and Electrochemical impedance spectroscopy analysis (determined by Half cell testing) were applied to investigation of electrochemical properties of the prepared electrodes. The results indicated that the improvement of performance and reduction of charge transfer resistance PtFeNiO/CNT/CP compared to PtFeNiO/CP, CNT/CP, CP and commercial catalyst Pt/C (10 wt%) loaded on CP, can be attributed to strong adhesion of in-situ CNTs to the CP, lower agglomeration of CNTs, outstanding electrical and thermal conductivity of CNT along with high catalytic activity of triple catalyst. These results make them promising candidates for the future of nano chip devices.

Keywords

Contact Angle Thermal Gravimetric Analysis Catalyst Layer Field Emission Scanning Electron Microscopy Image Carbon Paper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Shahbazi, A. Bahari, S. Ghademi, Structural and frequency-dependent dielectric properties of PVP-SiO2-TMSPM hybrid thin films, Org. Electron. 32, 100–108 (2016). Doi: 10.1016/j.orgel.2016.02.012 CrossRefGoogle Scholar
  2. 2.
    A. Bahari, M. Shahbazi, Electrical properties of PVP-SiO2-TMSPM hybrid thin film as Gate dielectric of OFETs, JEM, 45(2),1201–1209 (2016). doi: 10.1007/s11664-015-4262-y.CrossRefGoogle Scholar
  3. 3.
    A. Bahari, A. Qhavami, Electrical and nanostructural characteristics of R-, Fe-, S-CNT electrodes of microbial field effect transistors, J. Mater. Sci. Mater. Electron. 27, 5934–5942 (2016). doi: 10.1007/s10854-016-4513-6.CrossRefGoogle Scholar
  4. 4.
    J. Chen, Y. Huang, X. Zhang, X. Chen, C. Li, MnO2 grown in situ on graphene@CNTs as electrode materials for supercapacitors, Ceram. Int. 41, 12680–12685 (2015). doi: 10.1016/j.ceramint.2015.06.099.CrossRefGoogle Scholar
  5. 5.
    Y. Li, Y. Huang, Z. Zhang, D. Duan, X. Hao, S. Liu, Preparation and structural evolution of well aligned-carbon nanotube arrays onto conductive carbon-black layer/carbon paper substrate with enhanced discharge capacity for Li–air batteries, Chem. Eng. J. 283, 911–921 (2016). doi: 10.1016/j.cej.2015.08.063 CrossRefGoogle Scholar
  6. 6.
    D. Li, Y. Cheng, Y. Wang, H. Zhang, C. Dong, D. Li, Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge, Appl. Surf. Sci. 365, 10–18 (2016). doi: 10.1016/j.apsusc.2016.01.011 CrossRefGoogle Scholar
  7. 7.
    R. Schweiss, M. Steeb, P.M. Wilde, T. Schubert, Enhancement of proton exchange membrane fuel cell performance by doping microporous layers of gas diffusion layers with multiwall carbon nanotubes, J. Power Sources. 220, 79–83 (2012). doi: 10.1016/j.jpowsour.2012.07.078 CrossRefGoogle Scholar
  8. 8.
    M. Ciszewski, E. Szatkowska, A. Koszorek, M. Majka, Carbon aerogels modified with graphene oxide, graphene and CNT as symetric supercapacitor electrodes, J. Mater. Sci. Mater. Electron. (2016). doi: 10.1007/s10854-016-6137-2.Google Scholar
  9. 9.
    A. Naeimi, A.M. Arabi, M.S. Afarani, A.R. Gardeshzadeh, In situ synthesis and electrophoretic deposition of CNT-ZnS:Mn luminescent nanocomposites, J. Mater. Sci. Mater. Electron. 26, 1403–1412 (2015). doi: 10.1007/s10854-014-2554-2.CrossRefGoogle Scholar
  10. 10.
    J. Xiao, H. Wang, X. Li, Z. Wang, J. Ma, H. Zhao, N-doped carbon nanotubes as cathode material in Li-S batteries, J. Mater. Sci. Mater. Electron. 26, 7895–7900 (2015). doi: 10.1007/s10854-015-3441-1.CrossRefGoogle Scholar
  11. 11.
    V. Kamavaram, V. Veedu, A.M. Kannan, Synthesis and characterization of platinum nanoparticles on in situ grown carbon nanotubes based carbon paper for proton exchange membrane fuel cell cathode, J. Power Sources. 188, 51–56 (2009). doi: 10.1016/j.jpowsour.2008.11.084 CrossRefGoogle Scholar
  12. 12.
    Q.-J. Gong, H.-J. Li, X. Wang, Q.-G. Fu, Z. Wang, K.-Z. Li, In situ catalytic growth of carbon nanotubes on the surface of carbon cloth, Compos. Sci. Technol. 67, 2986–2989 (2007). doi: 10.1016/j.compscitech.2007.05.002 CrossRefGoogle Scholar
  13. 13.
    T. Zhao, I. Kvande, Y. Yu, M. Ronning, A. Holmen, D. Chen, Synthesis of platelet carbon nanofiber/carbon felt composite on in situ generated Ni–Cu nanoparticles, J. Phys. Chem. C 115, 1123–1133 (2011). doi: 10.1021/jp106320u CrossRefGoogle Scholar
  14. 14.
    X. Sun, B. Stansfield, J.P. Dodelet, S. Désilets, Growth of carbon nanotubes on carbon paper by Ohmically heating silane-dispersed catalytic sites., Chem. Phys. Lett. 363, 415–421 (2002). doi: 10.1016/S0009-2614(02)01250-2 CrossRefGoogle Scholar
  15. 15.
    J. Liu, C.-T. Liu, L. Zhao, J.-J. Zhang, L.-M. Zhang, Z.-B. Wang, Effect of different structures of carbon supports for cathode catalyst on performance of direct methanol fuel cell, Int. J. Hydrog. Energy 41, 1859–1870 (2015). doi: 10.1016/j.ijhydene.2015.11.103 CrossRefGoogle Scholar
  16. 16.
    Q. Zhang, J. Liu, R. Sager, L. Dai, J. Baur, Hierarchical composites of carbon nanotubes on carbon fiber: Influence of growth condition on fiber tensile properties, Compos. Sci. Technol. 69, 594–601 (2009). doi: 10.1016/j.compscitech.2008.12.002 CrossRefGoogle Scholar
  17. 17.
    S.P. Sharma, S.C. Lakkad, Morphology study of carbon nanospecies grown on carbon fibers by thermal CVD technique, Surf. Coat. Technol. 203, 1329–1335 (2009). doi: 10.1016/j.surfcoat.2008.10.043.CrossRefGoogle Scholar
  18. 18.
    K. Hata, D.N. Futaba, K. Mizuno, T. Namai, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science. 306, 1362–1364 (2014). doi: 10.1126/science.1104962 CrossRefGoogle Scholar
  19. 19.
    H. Liu, Y. Zhang, R. Li, X. Sun, H. Abou-Rachid, Thermal and chemical durability of nitrogen-doped carbon nanotubes, J. Nanoparticle Res. 14, 1016 (2012). doi: 10.1007/s11051-012-1016-0 CrossRefGoogle Scholar
  20. 20.
    S.M. Andersen, M. Borghei, P. Lund, Y.R. Elina, A. Pasanen, E. Kauppinen et al., Durability of carbon nanofiber (CNF) & carbon nanotube (CNT) as catalyst support for Proton Exchange Membrane Fuel Cells., Solid State Ion. 231, 94–101 (2013). doi: 10.1016/j.ssi.2012.11.020 CrossRefGoogle Scholar
  21. 21.
    C.-T. Hsieh, W.-Y. Chen, F.-L. Wu, Fabrication and superhydrophobicity of fluorinated carbon fabrics with micro/nanoscaled two-tier roughness, Carbon N.Y. 46, 1218–1224 (2008). doi: 10.1016/j.carbon.2008.04.026.CrossRefGoogle Scholar
  22. 22.
    C.-T. Hsieh, W.-Y. Chen, Water/oil repellency and drop sliding behavior on carbon nanotubes/carbon paper composite surfaces, Carbon N.Y. 48, 612–619 (2010). doi: 10.1016/j.carbon.2009.09.076.CrossRefGoogle Scholar
  23. 23.
    C.-T. Hsieh, W.-Y. Chen, F.-L. Wu, W.-M. Hung, Superhydrophobicity of a three-tier roughened texture of microscale carbon fabrics decorated with silica spheres and carbon nanotubes, Diam. Relat. Mater. 19, 26–30 (2010). doi: 10.1016/j.diamond.2009.10.017 CrossRefGoogle Scholar
  24. 24.
    C.-H. Wang, H.-C. Shih, Y.-T. Tsai, H.-Y. Du, L.-C. Chen, K.-H. Chen, High methanol oxidation activity of electrocatalysts supported by directly grown nitrogen-containing carbon nanotubes on carbon cloth, Electrochim. Acta. 52, 1612–1617 (2006). doi: 10.1016/j.electacta.2006.03.102 CrossRefGoogle Scholar
  25. 25.
    J. Fang, P.N. Luo, R. Njoki, D. Loukrakpam, B. Mott, Wanjala et al., Nanostructured PtVFe catalysts: Electrocatalytic performance in proton exchange membrane fuel cells, Electrochem. Commun. 11, 1139–1141 (2009). doi: 10.1016/j.elecom.2009.03.032 CrossRefGoogle Scholar
  26. 26.
    M.A. Yahya, C.W.Z. C. W. Ngah, M.A. Hashim, M. Ahmad, M.A. Yarmo, Desiccated coconut residue based activated carbon as an electrode material for electric double layer capacitor, Appl. Phys. Res. 7, 93–97 (2015). doi: 10.5539/apr.v7n2p93.CrossRefGoogle Scholar
  27. 27.
    Q. Jiang, X.Y. Lu, Y. Zhao, Effects of protection gas flow rate on the electrochemical capacitance of activated carbon nanotubes, Mater. Chem. Phys. 99, 314–317 (2006). doi: 10.1016/j.matchemphys.2005.10.034 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Basic SciencesUniversity of MazandaranBabolsarIran
  2. 2.Department of Analytical Chemistry, Faculty of ChemistryUniversity of MazandaranBabolsarIran

Personalised recommendations