Optimisation of pH of cadmium chloride post-growth-treatment in processing CDS/CDTE based thin film solar cells

  • A. A. Ojo
  • I. M. Dharmadasa


The role of Chlorine-based activation in the production of high quality CdS/CdTe photovoltaic have been well discussed and explored with an overlook of the effect of Cadmium chloride (CdCl2) post-growth treatment acidity on the property of the fabricated devices. This work focuses on the optimisation of CdCl2 post-growth treatment pH as it affects both the material and fabricated device properties of all-electrodeposited multilayer glass/FTO/n-CdS/n-CdTe/p-CdTe configuration. CdCl2 treatments with acidity ranging from pH1 to pH4 were explored. The properties of the ensued CdTe layer were explored using optical, morphological, compositional structural and electrical property analysis, while, the effect on fabricated multilayer glass/FTO/n-CdS/n-CdTe/p-CdTe configuration were also explored using both I-V and C-V measurements. Highest improvements in the optical, morphological, compositional and structural were observed at pH2 CdCl2 post-growth treatment with an improvement in absorption edge, grain size, crystallinity and crystallite size. Conductivity type conversions from n-CdTe to p-CdTe, increase in pin-hole density and collapse of the absorption edge were observed after pH1 CdCl2 treatment. The highest fabricated solar cell efficiency of 13% was achieved using pH2 CdCl2 treatment as compared to other pH values explored.


CdCl2 Ideality Factor Conductivity Type Cadmium Chloride CdTe Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors will like to thank members of the SHU Solar Energy Group comprising of Salim Hussein, Olusola Olajide, Azlian Abdul-Manaf and Mohammed Madugu for their contributions to this work. The principal author will also like to thank Sheffield Hallam University, Ekiti State University and TETFund Nigeria for their support.

Compliance with Ethical Standards

Conflict of interest

We have no conflict of interest in this paper.


  1. 1.
    I.M. Dharmadasa, Review of the CdCl2 treatment used in CdS/CdTe thin film solar cell development and new evidence towards improved understanding. Coatings 4(2), 282–307 (2014)CrossRefGoogle Scholar
  2. 2.
    S. Mazzamuto, L. Vaillant, A. Bosio, N. Romeo, N. Armani, G. Salviati, “A study of the CdTe treatment with a Freon gas such as CHF2Cl”. Thin Solid Films 516, 7079–7083 (2008)CrossRefGoogle Scholar
  3. 3.
    J.D. Major, L. Bowen, R.E. Treharne, L.J. Phillips, K. Durose, “NH 4 Cl Alternative to the CdCl 2 Treatment Step for CdTe Thin-Film Solar Cells”. IEEE J 5(1), 386–389 (2015)Google Scholar
  4. 4.
    B. Maniscalco, A. Abbas, J.W. Bowers, P.M. Kaminski, K. Bass, G. West, J.M. Walls, “The activation of thin film CdTe solar cells using alternative chlorine containing compounds”. Thin Solid Films 582, 115–119 (2015)CrossRefGoogle Scholar
  5. 5.
    A. Bosio, N. Romeo, S. Mazzamuto, V. Canevari, “Polycrystalline CdTe thin films for photovoltaic applications”. Prog. Cryst. Growth Charact. Mater 52(4), 247–279 (2006)CrossRefGoogle Scholar
  6. 6.
    B.M. Başol, “Processing high efficiency CdTe solar cells”. Int. J. Sol. Energy 12(1–4), 25–35 (1992)Google Scholar
  7. 7.
    B.E. McCandless, I. Youm, R.W. Birkmire, “Optimization of vapor post-deposition processing for evaporated CdS/CdTe solar cells”. Prog. Photovolt. Res. Appl 7(1), 21–30 (1999)CrossRefGoogle Scholar
  8. 8.
    H. Bayhan, C. Ercelebi, “Effects of post deposition treatments on vacuum evaporated CdTe thin films and CdS/CdTe heterojunction devices”. Turk. J. Phys. 22, 441–451 (1998)Google Scholar
  9. 9.
    N.A. Abdul-Manaf, A.R. Weerasinghe, O.K. Echendu, I.M. Dharmadasa, “Electro-plating and characterisation of cadmium sulphide thin films using ammonium thiosulphate as the sulphur source”. J. Mater. Sci. Mater. Electron. 26(4), 2418–2429 (2015)CrossRefGoogle Scholar
  10. 10.
    H. Lin, W. Irfan, Xia, H.N. Wu, Y. Gao, C.W. Tang, “MoOx back contact for CdS/CdTe thin film solar cells: Preparation, device characteristics, and stability”. Sol. Energy Mater. Sol. Cells 99, 349–355 (2012)CrossRefGoogle Scholar
  11. 11.
    A.A. Ojo, I.M. Dharmadasa, 15.3% efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films. Sol. Energy 136, 10–14 (2016)CrossRefGoogle Scholar
  12. 12.
    H.I. Salim, V. Patel, A. Abbas, J.M. Walls, I.M. Dharmadasa, “Electrodeposition of CdTe thin films using nitrate precursor for applications in solar cells”. J. Mater. Sci. Mater. Electron. 26(5), 3119–3128 (2015)CrossRefGoogle Scholar
  13. 13.
    J. Woodcock, A. Turner, M. Ozsan, J. Summers, Thin film solar cells based on electrodeposited CdTe. Photovolt. Spec. Conf. 1991., Conf. Rec. Twenty Second IEEE, pp. 842–847 (1991)Google Scholar
  14. 14.
    I.M. Dharmadasa, C.J. Blomfield, C.G. Scott, R. Coratger, F. Ajustron, J. Beauvillain, Metal/n-CdTe interfaces: A study of electrical contacts by deep level transient spectroscopy and ballistic electron emission microscopy, Solid. State. Electron. 42(4), 595–604 (1998)Google Scholar
  15. 15.
    I.M. Dharmadasa, Recent developments and progress on electrical contacts to CdTe, CdS and ZnSe with special reference to barrier contacts to CdTe. Prog. Crystal Growth Charact. Mater. 36(4), pp. 249–290, (1998)CrossRefGoogle Scholar
  16. 16.
    J. Tauc, A. Menth, States in the gap. J. Non. Cryst. Solids 8–10, 569–585 (1972)CrossRefGoogle Scholar
  17. 17.
    V. Krishnakumar, J. Han, A. Klein, W. Jaegermann, CdTe thin film solar cells with reduced CdS film thickness. Thin Solid Films 519(21), 7138–7141 (2011)CrossRefGoogle Scholar
  18. 18.
    D.A. Wood, K.D. Rogers, D.W. Lane, D.A. Wood, K.D. Rogers, J.A. Coath, “Optical and structural characterization of CdS x Te 1- x thin films for solar cell applications”. J. Phys. Condens. Matter 12(19), 4433 (2000)CrossRefGoogle Scholar
  19. 19.
    G. Carotenuto, M. Palomba, S. De Nicola, G. Ambrosone, U. Coscia, “Structural and photoconductivity properties of Tellurium/PMMA Films.” Nanoscale Res. Lett. 10(1), 1007 (2015)CrossRefGoogle Scholar
  20. 20.
    B. Abad, M. Rull-Bravo, S.L. Hodson, X. Xu, M. Martin-Gonzalez, “Thermoelectric properties of electrodeposited tellurium films and the sodium lignosulfonate effect”. Electrochim. Acta 169, 37–45 (2015)CrossRefGoogle Scholar
  21. 21.
    S. Chun, S. Lee, Y. Jung, J.S. Bae, J. Kim, D. Kim, “Wet chemical etched CdTe thin film solar cells”. Curr. Appl. Phys. 13(1), 211–216 (2013)CrossRefGoogle Scholar
  22. 22.
    J. Nowotny, T. Bak, M. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen I. Functional properties”. Int. J. Hydrogen Energy 32(14), 2609–2629 (2007)CrossRefGoogle Scholar
  23. 23.
    N. Abdul-Manaf, H. Salim, M. Madugu, O. Olusola, I. Dharmadasa, “Electro-plating and characterisation of CdTe thin films using CdCl2 as the Cadmium source”. Energies 8(10), 10883–10903 (2015)CrossRefGoogle Scholar
  24. 24.
    P.J. Sellin, A.W. Dazvies, A. Lohstroh, M.E. Özsan, J. Parkin, Drift mobility and mobility-lifetime products in CdTe:Cl grown by the travelling heater method. IEEE Trans. Nucl. Sci. 52(6), 3074–3078 (2005)CrossRefGoogle Scholar
  25. 25.
    T. Soga, Nanostructured materials for solar energy conversion. Elsvier Sci. 2030, 614 (2004)Google Scholar
  26. 26.
    I.M. Dharmadasa, Advances in thin-film solar cells. (Pan Stanford, Singapore, 2013)Google Scholar
  27. 27.
    J. Verschraegen, M. Burgelman, J. Penndorf, Temperature dependence of the diode ideality factor in CuInS2-on-Cu-tape solar cells. Thin Solid Films 480–481, 307–311 (2005)CrossRefGoogle Scholar
  28. 28.
    W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510 (1961)CrossRefGoogle Scholar
  29. 29.
    A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D 13(5), pp. 839–846, (2000)CrossRefGoogle Scholar
  30. 30.
    R.B. Godfrey, M.A. Green, Enhancement of MIS solar-cell ‘efficiency’ by peripheral collection. Appl. Phys. Lett. 31(10), 705–707 (1977)CrossRefGoogle Scholar
  31. 31.
    B.M. Basol, High-efficiency electroplated heterojunction solar cell. J. Appl. Phys 55(1984), 601–603 (1984)CrossRefGoogle Scholar
  32. 32.
    I.M. Dharmadasa, A.A. Ojo, H.I. Salim, R. Dharmadasa, “Next generation solar cells based on graded bandgap device structures utilising rod-type nano-materials”. Energies 8(6), 5440–5458 (2015)CrossRefGoogle Scholar
  33. 33.
    D. Congreve, J. Lee, N. Thompson, and E. Hontz, External quantum efficiency above 100% in a singlet-exciton-fission–based organic photovoltaic cell. Science 340(6130), pp. 334–337 (2013)CrossRefGoogle Scholar
  34. 34.
    N.J.L.K. Davis, M.L. Bohm, M. Tabachnyk, F. Wisnivesky-Rocca-Rivarola, T.C. Jellicoe, C. Ducati, B. Ehrler, and N.C. Greenham, “Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%,” Nat. Commun. 6(2), pp. 81–87 (2015)Google Scholar
  35. 35.
    I. Strzalkowski, S. Joshi, C.R. Crowell, Dielectric constant and its temperature dependence for GaAs, CdTe, and ZnSe. Appl. Phys. Lett. 28(6), 350–352 (1976)CrossRefGoogle Scholar
  36. 36.
    B.M. Basol, B. McCandless, Brief review of cadmium telluride-based photovoltaic technologies. J. Photonics Energy 4, 40996 (2014)CrossRefGoogle Scholar
  37. 37.
    M. Gloeckler, I. Sankin, Z. Zhao, “CdTe solar cells at the threshold to 20% efficiency”. IEEE J. Photovolt. 3(4), 1389–1393 (2013)CrossRefGoogle Scholar
  38. 38.
    T.J. Coutts, S. Naseem, “High efficiency indium tin oxide/indium phosphide solar cells.” Appl. Phys. Lett. 46(2), 164–166 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Electronic Materials and Sensors Group, Materials and Engineering Research Institute (MERI)Sheffield Hallam UniversitySheffieldUK

Personalised recommendations