Advertisement

Thermally activated variations in conductivity and activation energy in SrMnO3

  • Syed Kumail Abbas
  • Shahid Atiq
  • Saira Riaz
  • Shahzad Naseem
Article

Abstract

In this paper, we present a series of strontium manganite samples, synthesized using an efficient sol–gel based auto-combustion route by optimizing the calcination temperature and time. X-ray diffraction revealed the formation of pure phase hexagonal perovskite structure in the sample calcined at 1000 °C for 4 h. Tangent loss and loss factor versus frequency plots demonstrate total losses present in the material which are important parameters in determining immunity level of the materials for magneto-electric coupling potentially viable for non-volatile ferroelectric random access memories. Frequency dependent ac conductivity at different temperatures indicates that the conduction process is thermally activated. Trend of ac conductivity exhibits frequency independent and dependent regions. Correlation of the ac and dc conductivities along with hopping mechanism has also been probed. The activation energy has been calculated from an Arrhenius plot of dc conductivity and relaxation frequency.

Keywords

Ceramics Sol–gel chemistry Impedance spectroscopy Electrical properties 

Notes

Acknowledgements

The authors are thankful to Higher Education Commission of Pakistan for funding this research work via research project No. NRPU-2471.

References

  1. 1.
    L. Li, C.B. Wang, Y.J. Shen, Q. Shen, L.M. Zhang, J. Mater. Sci.: Mater. Electron 26, 2508 (2015)Google Scholar
  2. 2.
    I. Coondoo, N. Panwarb, M.A. Rafiq, V.S. Pulid, M.N. Rafiqe, R.S. Katiyar, Ceram. Int. 40, 9895 (2014)CrossRefGoogle Scholar
  3. 3.
    S.C. Chang, S.A. Halim, M. Navasery, Z.A. Talib, K.P. Lim, S.K. Chen, M.M.A. Kechik, J. Mater. Sci.: Mater. Electron 25, 2843 (2014)Google Scholar
  4. 4.
    M. Li, A. Feteira, D.C. Sinclair, J. Appl. Phys. 98, 084101 (2005)CrossRefGoogle Scholar
  5. 5.
    K.Y. Choi, P. Lemmens, G. Güntherodt, Yu..G. Pashkevich, V.P. Gnezdilov, P. Reutler, L. Pinsard-Gaudart, B. Büchner, A. Revcolevschi, Phys. Rev. B 71, 174402 (2005)CrossRefGoogle Scholar
  6. 6.
    S. Dong, X.Y. Yao, J.M. K.F. Wang, Liu. J. Phys. Condens. Mat. 18, L171 (2006)CrossRefGoogle Scholar
  7. 7.
    J.M. Porras-Vazqueza, J.F. Marcob, F.J. Berrya, P.R. Slater, Mater. Res. Bull. 67, 63 (2015)CrossRefGoogle Scholar
  8. 8.
    P.T. Phong, S.J. Jang, B.T. Huy, Y.I. Lee, I.J. Lee, J. Mater. Sci. 24, 2292 (2013)Google Scholar
  9. 9.
    H. Sakai, J. Fujioka, T. Fukuda, D. Okuyama, D. Hashizume, F. Kagawa, H. Nakao, Y. Murakami, T. Arim, A.Q.R. Baron, Y. Taguchi, Y. Tokura, Phys. Rev. Lett. 107, 137601 (2011)CrossRefGoogle Scholar
  10. 10.
    V.V. Bannikov, I.R. Shein, V.L. Kozhevnikov, A.L. Ivanovskii, J. Magn. Magn. Mater. 320, 936 (2008)CrossRefGoogle Scholar
  11. 11.
    T.I. Chupakhinaa, N.I. Kadyrovaa, N.V. Melnikovab, O.I. Gyrdasovaa, E.A. Yakovlevab, Yu..G. Zainulin, Mater. Res. Bull. 77, 190 (2016)CrossRefGoogle Scholar
  12. 12.
    J.F. Scott, Nature Mater. 4, 13 (2005)CrossRefGoogle Scholar
  13. 13.
    K.C. Verma, M. Ram, J. Singh, R.K. Kotnala, J. Alloy. Compd. 509, 4967 (2011)CrossRefGoogle Scholar
  14. 14.
    C. Zhang, J. Su, J. Zhang, L. Zhang, X. Lu, J. Zhu, J. Alloy. Compd. 509, 7738 (2011)CrossRefGoogle Scholar
  15. 15.
    C. Moure, O. Pena, J. Magn. Magn. Mater. 338, 1 (2013)CrossRefGoogle Scholar
  16. 16.
    C. Doroftei, P.D. Popa, E. Rezlescu, N. Rezlescu, J. Alloy. Compd. 584, 195 (2014)CrossRefGoogle Scholar
  17. 17.
    P.D. Battle, T.C. Gibb, C.W. Jones, J. Solid State Chem. 74, 60 (1988)CrossRefGoogle Scholar
  18. 18.
    J.H. Lee, K.M. Rabe, Phys. Rev. Lett. 104, 207204 (2010)CrossRefGoogle Scholar
  19. 19.
    J.C. M’Peko, A.R.R. Salvador, G.R. Fuentes, Mater. Lett. 36, 290 (1998)CrossRefGoogle Scholar
  20. 20.
    T.V.S.L. Satyavani, B.R. Kiran, V.R. Kumar, A.S. Kumar, S.V. Naidu, Eng. Sci. Technol. 19, 40 (2016)Google Scholar
  21. 21.
    G. Pei, F. Wu, C. Xia, J. Zhang, X. Li, J. Xu, Curr. Appl. Phys. 8, 18 (2008)CrossRefGoogle Scholar
  22. 22.
    B.D. Cullity, Elements of X-ray Diffraction, 2nd Edn, (Addison-Wesley Publishing Company Inc., California, USA, 1978)Google Scholar
  23. 23.
    M. Saleem, S. Atiq, S.M. Ramay, A. Mehmood, Adv. Mater. Sci. Eng. 2014, 670286 (2014)CrossRefGoogle Scholar
  24. 24.
    M. Gaudon, C.L. Robert, F. Ansart, P. Stevens, A. Rousset, Solid State Sci. 4, 125 (2002)CrossRefGoogle Scholar
  25. 25.
    N. Rezlescu, E. Rezlescu, P.D. Popa, C. Doroftei, M. Ignat, Ceram. Int. 41, 4430 (2015)CrossRefGoogle Scholar
  26. 26.
    N. Hirose, A.R. West, J. Am. Ceram. Soc. 79, 1633 (1996)CrossRefGoogle Scholar
  27. 27.
    M. Li, A. Feteira, D.C. Sinclair, J. Appl. Phys. 105, 114109 (2009)CrossRefGoogle Scholar
  28. 28.
    E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts. (Clarendon, Oxford, 1988)Google Scholar
  29. 29.
    S. Ramo, J.R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics, 3rd Edn., (Wiley, New York, 1994)Google Scholar
  30. 30.
    M. Sindhu, N. Ahlwat, S. Sanghi, A. Agarwal, N. Ahlawat, Curr. Appl. Phys. 12, 1429 (2012)CrossRefGoogle Scholar
  31. 31.
    Y.J. Wong, J. Hassan, M. Hashim, J. Alloy. Compd. 571, 138 (2013)CrossRefGoogle Scholar
  32. 32.
    S. Sahoo, U. Dash, K.S. Parashar, S.M. Ali, J. Adv. Ceram. 2, 291 (2013)CrossRefGoogle Scholar
  33. 33.
    J.S. Irwine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Syed Kumail Abbas
    • 1
  • Shahid Atiq
    • 1
  • Saira Riaz
    • 1
  • Shahzad Naseem
    • 1
  1. 1.Centre of Excellence in Solid State PhysicsUniversity of the PunjabLahorePakistan

Personalised recommendations