Skip to main content

Advertisement

Log in

Thermally activated variations in conductivity and activation energy in SrMnO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, we present a series of strontium manganite samples, synthesized using an efficient sol–gel based auto-combustion route by optimizing the calcination temperature and time. X-ray diffraction revealed the formation of pure phase hexagonal perovskite structure in the sample calcined at 1000 °C for 4 h. Tangent loss and loss factor versus frequency plots demonstrate total losses present in the material which are important parameters in determining immunity level of the materials for magneto-electric coupling potentially viable for non-volatile ferroelectric random access memories. Frequency dependent ac conductivity at different temperatures indicates that the conduction process is thermally activated. Trend of ac conductivity exhibits frequency independent and dependent regions. Correlation of the ac and dc conductivities along with hopping mechanism has also been probed. The activation energy has been calculated from an Arrhenius plot of dc conductivity and relaxation frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Li, C.B. Wang, Y.J. Shen, Q. Shen, L.M. Zhang, J. Mater. Sci.: Mater. Electron 26, 2508 (2015)

    Google Scholar 

  2. I. Coondoo, N. Panwarb, M.A. Rafiq, V.S. Pulid, M.N. Rafiqe, R.S. Katiyar, Ceram. Int. 40, 9895 (2014)

    Article  Google Scholar 

  3. S.C. Chang, S.A. Halim, M. Navasery, Z.A. Talib, K.P. Lim, S.K. Chen, M.M.A. Kechik, J. Mater. Sci.: Mater. Electron 25, 2843 (2014)

    Google Scholar 

  4. M. Li, A. Feteira, D.C. Sinclair, J. Appl. Phys. 98, 084101 (2005)

    Article  Google Scholar 

  5. K.Y. Choi, P. Lemmens, G. Güntherodt, Yu..G. Pashkevich, V.P. Gnezdilov, P. Reutler, L. Pinsard-Gaudart, B. Büchner, A. Revcolevschi, Phys. Rev. B 71, 174402 (2005)

    Article  Google Scholar 

  6. S. Dong, X.Y. Yao, J.M. K.F. Wang, Liu. J. Phys. Condens. Mat. 18, L171 (2006)

    Article  Google Scholar 

  7. J.M. Porras-Vazqueza, J.F. Marcob, F.J. Berrya, P.R. Slater, Mater. Res. Bull. 67, 63 (2015)

    Article  Google Scholar 

  8. P.T. Phong, S.J. Jang, B.T. Huy, Y.I. Lee, I.J. Lee, J. Mater. Sci. 24, 2292 (2013)

    Google Scholar 

  9. H. Sakai, J. Fujioka, T. Fukuda, D. Okuyama, D. Hashizume, F. Kagawa, H. Nakao, Y. Murakami, T. Arim, A.Q.R. Baron, Y. Taguchi, Y. Tokura, Phys. Rev. Lett. 107, 137601 (2011)

    Article  Google Scholar 

  10. V.V. Bannikov, I.R. Shein, V.L. Kozhevnikov, A.L. Ivanovskii, J. Magn. Magn. Mater. 320, 936 (2008)

    Article  Google Scholar 

  11. T.I. Chupakhinaa, N.I. Kadyrovaa, N.V. Melnikovab, O.I. Gyrdasovaa, E.A. Yakovlevab, Yu..G. Zainulin, Mater. Res. Bull. 77, 190 (2016)

    Article  Google Scholar 

  12. J.F. Scott, Nature Mater. 4, 13 (2005)

    Article  Google Scholar 

  13. K.C. Verma, M. Ram, J. Singh, R.K. Kotnala, J. Alloy. Compd. 509, 4967 (2011)

    Article  Google Scholar 

  14. C. Zhang, J. Su, J. Zhang, L. Zhang, X. Lu, J. Zhu, J. Alloy. Compd. 509, 7738 (2011)

    Article  Google Scholar 

  15. C. Moure, O. Pena, J. Magn. Magn. Mater. 338, 1 (2013)

    Article  Google Scholar 

  16. C. Doroftei, P.D. Popa, E. Rezlescu, N. Rezlescu, J. Alloy. Compd. 584, 195 (2014)

    Article  Google Scholar 

  17. P.D. Battle, T.C. Gibb, C.W. Jones, J. Solid State Chem. 74, 60 (1988)

    Article  Google Scholar 

  18. J.H. Lee, K.M. Rabe, Phys. Rev. Lett. 104, 207204 (2010)

    Article  Google Scholar 

  19. J.C. M’Peko, A.R.R. Salvador, G.R. Fuentes, Mater. Lett. 36, 290 (1998)

    Article  Google Scholar 

  20. T.V.S.L. Satyavani, B.R. Kiran, V.R. Kumar, A.S. Kumar, S.V. Naidu, Eng. Sci. Technol. 19, 40 (2016)

    Google Scholar 

  21. G. Pei, F. Wu, C. Xia, J. Zhang, X. Li, J. Xu, Curr. Appl. Phys. 8, 18 (2008)

    Article  Google Scholar 

  22. B.D. Cullity, Elements of X-ray Diffraction, 2nd Edn, (Addison-Wesley Publishing Company Inc., California, USA, 1978)

  23. M. Saleem, S. Atiq, S.M. Ramay, A. Mehmood, Adv. Mater. Sci. Eng. 2014, 670286 (2014)

    Article  Google Scholar 

  24. M. Gaudon, C.L. Robert, F. Ansart, P. Stevens, A. Rousset, Solid State Sci. 4, 125 (2002)

    Article  Google Scholar 

  25. N. Rezlescu, E. Rezlescu, P.D. Popa, C. Doroftei, M. Ignat, Ceram. Int. 41, 4430 (2015)

    Article  Google Scholar 

  26. N. Hirose, A.R. West, J. Am. Ceram. Soc. 79, 1633 (1996)

    Article  Google Scholar 

  27. M. Li, A. Feteira, D.C. Sinclair, J. Appl. Phys. 105, 114109 (2009)

    Article  Google Scholar 

  28. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts. (Clarendon, Oxford, 1988)

    Google Scholar 

  29. S. Ramo, J.R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics, 3rd Edn., (Wiley, New York, 1994)

  30. M. Sindhu, N. Ahlwat, S. Sanghi, A. Agarwal, N. Ahlawat, Curr. Appl. Phys. 12, 1429 (2012)

    Article  Google Scholar 

  31. Y.J. Wong, J. Hassan, M. Hashim, J. Alloy. Compd. 571, 138 (2013)

    Article  Google Scholar 

  32. S. Sahoo, U. Dash, K.S. Parashar, S.M. Ali, J. Adv. Ceram. 2, 291 (2013)

    Article  Google Scholar 

  33. J.S. Irwine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Higher Education Commission of Pakistan for funding this research work via research project No. NRPU-2471.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Atiq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, S.K., Atiq, S., Riaz, S. et al. Thermally activated variations in conductivity and activation energy in SrMnO3 . J Mater Sci: Mater Electron 28, 7171–7176 (2017). https://doi.org/10.1007/s10854-017-6397-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6397-5

Keywords

Navigation