Graphene oxide incorporated ZnO nanostructures as a powerful ultraviolet composite detector

  • M. Zare
  • S. Safa
  • R. Azimirad
  • S. Mokhtari


In this study, ultraviolet (UV) photodetection performance of graphene oxide (GO) incorporated ZnO composites with different contents of GO (0.25, 0.5, 1.0, and 2.0 wt%) is investigated. The presence of graphene oxide nanosheets in the composites is confirmed by microscopic images and spectroscopic tools. Scanning electron microscopy images showed a uniform distribution of GO nanosheets between ZnO nanostructures. Uniform dispersion of GO nanosheets between ZnO nanostructures was also approved by transmission electron microscopy. Based on X-ray diffraction spectra, it was found that GO nanosheets could be considered as seeds for inhomogeneous nucleation of ZnO nanoparticles. According to Raman spectroscopy, the number layers of graphene oxide nanosheets was calculated to be around 4–6. Finally, UV-detection measurements showed that 1.0 wt% of GO into ZnO nanopowder was accounted as optimal point. However, increasing the GO concentration gave rise to a substantial reduction in the responsivity of the samples. Indeed, we believe, in the sample whose GO concentration is more than 1.0 wt%, graphene sheets play as obstacles which decrease the amount of UV light absorbed by ZnO nanostructures.


Graphene Oxide Graphene Sheet Composite Powder Hybrid Film Graphene Nanosheets 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the Iran National Science Foundation for supporting the work.


  1. 1.
    E. Monroy, F. Omnes, F. Calle, Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 18, R33 (2003)CrossRefGoogle Scholar
  2. 2.
    L. Luo, Y. F. Zhang, S. S. Mao, L. W. Lin, Fabrication and characterization of ZnO nanowires based UV photodiodes, Sens. Actuators A 127, 201–206 (2006)CrossRefGoogle Scholar
  3. 3.
    M. Mehrabian, R. Azimirad, K. Mirabbaszadeh, H. Afarideh, M. Davoudian, UV detecting properties of hydrothermal synthesized ZnO nanorods, Phys. E, 43, 1141–1145 (2011)CrossRefGoogle Scholar
  4. 4.
    L.E. Greene, B.D. Yuhas, M. Law, D. Zitoun, P.D. Yang, Solution-grown zinc oxide nanowires. Inorg. Chem. 45, 7535–7543 (2006)CrossRefGoogle Scholar
  5. 5.
    X. J. Feng, L. Feng, M. H. Jin, J. Zhai, L. Jiang, D. B. Zhu, Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films, JACS, 126, 62–63 (2004)CrossRefGoogle Scholar
  6. 6.
    H.D. Yu, Z.P. Zhang, M.Y. Han, X.T. Hao, F.R. Zhu, A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays. J. Am. Chem. Soc. 127, 2378–2379 (2005)CrossRefGoogle Scholar
  7. 7.
    B.M. Wen, Y.Z. Huang, J.J. Boland, Controllable growth of ZnO nanostructures by a simple solvothermal process. J. Phys. Chem. C 112, 106–111 (2008)CrossRefGoogle Scholar
  8. 8.
    Z. Fan, D. Wang, P.C. Chang, W.Y. Tseng, J.G. Lu, ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 85, 5923–5925 (2004)CrossRefGoogle Scholar
  9. 9.
    F. Caruso, Nano engineering of particle surfaces. Adv. Mater 13, 11–22 (2001)CrossRefGoogle Scholar
  10. 10.
    D. Jiang, J. Zhang, Y. Lu, K. Liu, D. Zhao, Z. Zhang, D. Shen, X. Fan, Ultraviolet schottky detector based on epitaxial ZnO thin film. Solid State Electron 52, 670–682 (2008)Google Scholar
  11. 11.
    F. Caruso, Nanoengineering of particle surfaces. Adv. Mater 13, 11–22 (2001)CrossRefGoogle Scholar
  12. 12.
    O. Akhavan, R. Azimirad, S. Safa, M.M. Larijani, Visible light photo–induced antibacterial activity of CNT–doped TiO2 thin films with various CNT contents. J. Mater. Chem 20, 7386–7392 (2010)CrossRefGoogle Scholar
  13. 13.
    T. V Cuong, H. N. Tien, V. H. Luan, V. H. Pham, J. S. Chung, D. H. Yoo, S. H. Hahn, K.-K. Koo, P. A. Kohl, S. H. Hur, E. J. Kim, Solution processed semitransparent p-n graphene oxide/CNT:ZnO heterojunction diodes for visible blind UV sensors, Phys. Status. Solidi. A, 208, 943–946 CrossRefGoogle Scholar
  14. 14.
    X.L. Li, X.R. Wang, L. Zhang, S.W. Lee, H.J. Dai, Chemically derived ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, The highly conductive nature of graphene and ease of incorporation into polymers and ceramics. Nature 442, 282–286 (2006)CrossRefGoogle Scholar
  16. 16.
    F. Li, Y. Huang, Q. Yang, Z. Zhong, D. Li, L. Wang, S. Song, C. Fan, A graphene-enhanced molecular beacon for homogeneous DNA detection, Nanoscale 2, 1021–1026 (2010)CrossRefGoogle Scholar
  17. 17.
    D. Ick Son, H. Yeon Yang, T. Whan Kim, W.I. Park, Photoresponse mechanisms of ultraviolet photodetectors based on colloidal ZnO quantum dot graphene composites. Appl. Phys. Lett. 102, 021105–021105 (2013)CrossRefGoogle Scholar
  18. 18.
    Q. Zhang, C. Tian, A. Wu, T. Tan, L. Sun, L. Wang, H. Fu, A facile one-pot route for the controllable growth of small sized and well-dispersed ZnO particles on GO-derived graphene. J. Mater. Chem. 22, 11778–11784 (2012)CrossRefGoogle Scholar
  19. 19.
    X.M. Geng, L. Niu, Z.Y. Xing, R.S. Song, G.T. Liu, M.T. Sun, G.S. Cheng, H.J. Zhong, Z.H. Liu, Z.J. Zhang, L.F. Sun, H.X. Xu, L. Lu, L.W. Liu, Aqueous processable noncovalent chemically converted graphene-quantum dot composites for flexible and transparent optoelectronic films. Adv. Mater. 22, 638–642 (2010)CrossRefGoogle Scholar
  20. 20.
    H.Y. Yang, D.I. Son, T.W. Kim, J.M. Lee, W.I. Park, Enhancement of the photocurrent in ultraviolet photodetectors fabricated utilizing hybrid polymer-ZnO quantum dot composites due to an embedded graphene layer. Org. Electron. 11, 1313–1317 (2010)CrossRefGoogle Scholar
  21. 21.
    O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 4, 5731–5736 (2010)CrossRefGoogle Scholar
  22. 22.
    O. Akhavan, R. Azimirad, S. Safa, Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria, Mater. Chem. Phys. 130, 598–602 (2011)Google Scholar
  23. 23.
    H. Fujimoto, Theoretical X-ray scattering intensity of carbons with turbostratic stacking and AB stacking structures. Carbon 41, 1585–1592 (2007)CrossRefGoogle Scholar
  24. 24.
    H. Kim, A.A. Abdala, C.W. Macosko, Graphene/Polymer Nanocomposites. Macromolecules 43, 6515–6530 (2010)CrossRefGoogle Scholar
  25. 25.
    T. Xu, L. Zhang, H. Cheng, Y. Zhu, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catal. B 101, 382–387 (2011)CrossRefGoogle Scholar
  26. 26.
    N.J. Bell, H.N. Yun, A.J. Du, H. Coster, S.C. Smith, R. Amal, Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J. Phys. Chem. C 115, 6004–6009 (2011)CrossRefGoogle Scholar
  27. 27.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)CrossRefGoogle Scholar
  28. 28.
    T. Ohta, T.E. Beechem, J.T. Robinson, G.L. Kellogg, Long-range atomic ordering and variable interlayer interactions in two overlapping graphene lattices with stacking misorientations. Phys. Rev. B Condens. Matter 85, 075415 (2012)CrossRefGoogle Scholar
  29. 29.
    J. Ding, X. Yan, Q. Xue, Study on field emission and photoluminescence properties of ZnO/graphene hybrids grown on Si substrates. Mater. Chem. Phys. 133, 405–409 (2012)CrossRefGoogle Scholar
  30. 30.
    D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)CrossRefGoogle Scholar
  31. 31.
    T.G. Xu, L.W. Zhang, H.Y. Cheng, Y.F. Zhu, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catal. B 101, 382–387 (2011)CrossRefGoogle Scholar
  32. 32.
    S. Safa, R. Sarraf-Mamoory, R. Azimirad, Investigation of thermally reduced graphene oxide (rGO) effects on ultra violet detection of ZnO thin film, Phys. E, 57, 155–160 (2014)CrossRefGoogle Scholar
  33. 33.
    H. Chang, Z. Sun, K.Y.-F. Ho, X. Tao, F. Yan, W.-M. Kwok, Z. Zheng, A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure. Nanoscale 3, 258–264 (2011)CrossRefGoogle Scholar
  34. 34.
    J. Kim, J.-H. Yun, S.-W. Jee, Y.C. Park, M. Ju, S. Han, Y. Kim, J.-H. Kim, W.A. Anderson, J.-H. Lee, J. Yi, Rapid thermal annealed Al-doped ZnO film for a UV detector. Mater. Lett 65, 786–789 (2011)CrossRefGoogle Scholar
  35. 35.
    J. P. Kar, S. N. Das, J. H. Choi, Y. A. Lee, T. Y. Lee, J. M. Myoung, Fabrication of UV detectors based on ZnO nanowires using silicon microchannel, J. Crys. Growth, 311, 3305–3309 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of PhysicsIran University of Science and TechnologyTehranIran
  2. 2.Malek-Ashtar University of TechnologyTehranIran

Personalised recommendations