Skip to main content
Log in

Graphene oxide incorporated ZnO nanostructures as a powerful ultraviolet composite detector

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, ultraviolet (UV) photodetection performance of graphene oxide (GO) incorporated ZnO composites with different contents of GO (0.25, 0.5, 1.0, and 2.0 wt%) is investigated. The presence of graphene oxide nanosheets in the composites is confirmed by microscopic images and spectroscopic tools. Scanning electron microscopy images showed a uniform distribution of GO nanosheets between ZnO nanostructures. Uniform dispersion of GO nanosheets between ZnO nanostructures was also approved by transmission electron microscopy. Based on X-ray diffraction spectra, it was found that GO nanosheets could be considered as seeds for inhomogeneous nucleation of ZnO nanoparticles. According to Raman spectroscopy, the number layers of graphene oxide nanosheets was calculated to be around 4–6. Finally, UV-detection measurements showed that 1.0 wt% of GO into ZnO nanopowder was accounted as optimal point. However, increasing the GO concentration gave rise to a substantial reduction in the responsivity of the samples. Indeed, we believe, in the sample whose GO concentration is more than 1.0 wt%, graphene sheets play as obstacles which decrease the amount of UV light absorbed by ZnO nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Monroy, F. Omnes, F. Calle, Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 18, R33 (2003)

    Article  Google Scholar 

  2. L. Luo, Y. F. Zhang, S. S. Mao, L. W. Lin, Fabrication and characterization of ZnO nanowires based UV photodiodes, Sens. Actuators A 127, 201–206 (2006)

    Article  Google Scholar 

  3. M. Mehrabian, R. Azimirad, K. Mirabbaszadeh, H. Afarideh, M. Davoudian, UV detecting properties of hydrothermal synthesized ZnO nanorods, Phys. E, 43, 1141–1145 (2011)

    Article  Google Scholar 

  4. L.E. Greene, B.D. Yuhas, M. Law, D. Zitoun, P.D. Yang, Solution-grown zinc oxide nanowires. Inorg. Chem. 45, 7535–7543 (2006)

    Article  Google Scholar 

  5. X. J. Feng, L. Feng, M. H. Jin, J. Zhai, L. Jiang, D. B. Zhu, Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films, JACS, 126, 62–63 (2004)

    Article  Google Scholar 

  6. H.D. Yu, Z.P. Zhang, M.Y. Han, X.T. Hao, F.R. Zhu, A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays. J. Am. Chem. Soc. 127, 2378–2379 (2005)

    Article  Google Scholar 

  7. B.M. Wen, Y.Z. Huang, J.J. Boland, Controllable growth of ZnO nanostructures by a simple solvothermal process. J. Phys. Chem. C 112, 106–111 (2008)

    Article  Google Scholar 

  8. Z. Fan, D. Wang, P.C. Chang, W.Y. Tseng, J.G. Lu, ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 85, 5923–5925 (2004)

    Article  Google Scholar 

  9. F. Caruso, Nano engineering of particle surfaces. Adv. Mater 13, 11–22 (2001)

    Article  Google Scholar 

  10. D. Jiang, J. Zhang, Y. Lu, K. Liu, D. Zhao, Z. Zhang, D. Shen, X. Fan, Ultraviolet schottky detector based on epitaxial ZnO thin film. Solid State Electron 52, 670–682 (2008)

    Google Scholar 

  11. F. Caruso, Nanoengineering of particle surfaces. Adv. Mater 13, 11–22 (2001)

    Article  Google Scholar 

  12. O. Akhavan, R. Azimirad, S. Safa, M.M. Larijani, Visible light photo–induced antibacterial activity of CNT–doped TiO2 thin films with various CNT contents. J. Mater. Chem 20, 7386–7392 (2010)

    Article  Google Scholar 

  13. T. V Cuong, H. N. Tien, V. H. Luan, V. H. Pham, J. S. Chung, D. H. Yoo, S. H. Hahn, K.-K. Koo, P. A. Kohl, S. H. Hur, E. J. Kim, Solution processed semitransparent p-n graphene oxide/CNT:ZnO heterojunction diodes for visible blind UV sensors, Phys. Status. Solidi. A, 208, 943–946

    Article  Google Scholar 

  14. X.L. Li, X.R. Wang, L. Zhang, S.W. Lee, H.J. Dai, Chemically derived ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008)

    Article  Google Scholar 

  15. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, The highly conductive nature of graphene and ease of incorporation into polymers and ceramics. Nature 442, 282–286 (2006)

    Article  Google Scholar 

  16. F. Li, Y. Huang, Q. Yang, Z. Zhong, D. Li, L. Wang, S. Song, C. Fan, A graphene-enhanced molecular beacon for homogeneous DNA detection, Nanoscale 2, 1021–1026 (2010)

    Article  Google Scholar 

  17. D. Ick Son, H. Yeon Yang, T. Whan Kim, W.I. Park, Photoresponse mechanisms of ultraviolet photodetectors based on colloidal ZnO quantum dot graphene composites. Appl. Phys. Lett. 102, 021105–021105 (2013)

    Article  Google Scholar 

  18. Q. Zhang, C. Tian, A. Wu, T. Tan, L. Sun, L. Wang, H. Fu, A facile one-pot route for the controllable growth of small sized and well-dispersed ZnO particles on GO-derived graphene. J. Mater. Chem. 22, 11778–11784 (2012)

    Article  Google Scholar 

  19. X.M. Geng, L. Niu, Z.Y. Xing, R.S. Song, G.T. Liu, M.T. Sun, G.S. Cheng, H.J. Zhong, Z.H. Liu, Z.J. Zhang, L.F. Sun, H.X. Xu, L. Lu, L.W. Liu, Aqueous processable noncovalent chemically converted graphene-quantum dot composites for flexible and transparent optoelectronic films. Adv. Mater. 22, 638–642 (2010)

    Article  Google Scholar 

  20. H.Y. Yang, D.I. Son, T.W. Kim, J.M. Lee, W.I. Park, Enhancement of the photocurrent in ultraviolet photodetectors fabricated utilizing hybrid polymer-ZnO quantum dot composites due to an embedded graphene layer. Org. Electron. 11, 1313–1317 (2010)

    Article  Google Scholar 

  21. O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 4, 5731–5736 (2010)

    Article  Google Scholar 

  22. O. Akhavan, R. Azimirad, S. Safa, Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria, Mater. Chem. Phys. 130, 598–602 (2011)

    Google Scholar 

  23. H. Fujimoto, Theoretical X-ray scattering intensity of carbons with turbostratic stacking and AB stacking structures. Carbon 41, 1585–1592 (2007)

    Article  Google Scholar 

  24. H. Kim, A.A. Abdala, C.W. Macosko, Graphene/Polymer Nanocomposites. Macromolecules 43, 6515–6530 (2010)

    Article  Google Scholar 

  25. T. Xu, L. Zhang, H. Cheng, Y. Zhu, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catal. B 101, 382–387 (2011)

    Article  Google Scholar 

  26. N.J. Bell, H.N. Yun, A.J. Du, H. Coster, S.C. Smith, R. Amal, Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J. Phys. Chem. C 115, 6004–6009 (2011)

    Article  Google Scholar 

  27. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  28. T. Ohta, T.E. Beechem, J.T. Robinson, G.L. Kellogg, Long-range atomic ordering and variable interlayer interactions in two overlapping graphene lattices with stacking misorientations. Phys. Rev. B Condens. Matter 85, 075415 (2012)

    Article  Google Scholar 

  29. J. Ding, X. Yan, Q. Xue, Study on field emission and photoluminescence properties of ZnO/graphene hybrids grown on Si substrates. Mater. Chem. Phys. 133, 405–409 (2012)

    Article  Google Scholar 

  30. D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)

    Article  Google Scholar 

  31. T.G. Xu, L.W. Zhang, H.Y. Cheng, Y.F. Zhu, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catal. B 101, 382–387 (2011)

    Article  Google Scholar 

  32. S. Safa, R. Sarraf-Mamoory, R. Azimirad, Investigation of thermally reduced graphene oxide (rGO) effects on ultra violet detection of ZnO thin film, Phys. E, 57, 155–160 (2014)

    Article  Google Scholar 

  33. H. Chang, Z. Sun, K.Y.-F. Ho, X. Tao, F. Yan, W.-M. Kwok, Z. Zheng, A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure. Nanoscale 3, 258–264 (2011)

    Article  Google Scholar 

  34. J. Kim, J.-H. Yun, S.-W. Jee, Y.C. Park, M. Ju, S. Han, Y. Kim, J.-H. Kim, W.A. Anderson, J.-H. Lee, J. Yi, Rapid thermal annealed Al-doped ZnO film for a UV detector. Mater. Lett 65, 786–789 (2011)

    Article  Google Scholar 

  35. J. P. Kar, S. N. Das, J. H. Choi, Y. A. Lee, T. Y. Lee, J. M. Myoung, Fabrication of UV detectors based on ZnO nanowires using silicon microchannel, J. Crys. Growth, 311, 3305–3309 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Iran National Science Foundation for supporting the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Azimirad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, M., Safa, S., Azimirad, R. et al. Graphene oxide incorporated ZnO nanostructures as a powerful ultraviolet composite detector. J Mater Sci: Mater Electron 28, 6919–6927 (2017). https://doi.org/10.1007/s10854-017-6392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6392-x

Keywords

Navigation