Electromagnetic interference shielding performance and electromagnetic properties of wood-plastic nanocomposite with graphene nanoplatelets



In this paper, we investigated the electromagnetic interference (EMI) shielding effectiveness of wood-polyvinyl chloride (WP)/graphene nanoplatelets (GNP) nanocomposites (0–9 wt%) which are flexible, lightweight, and resistant, and its EMI shielding performance increases based on the enhancement of graphene amount in nanocomposites. The increase of EMI shielding ability is attributed to the electromagnetic properties of the WP/GNP nanocomposites, such as permeability and permittivity. Scanning electron microscopy pictures show that GNP, even at low proportions, had a good dispersion in WP. This study is achieved by the composites that we produced in laboratory conditions with five different combinations of graphene nanoplatelets, wood, and polyvinyl chloride. According to observation, GNP loading to WP regularly increased its permeability and permittivity so that reaching to good shielding effectiveness. When we look into the contributions of reflection and absorption to the total shielding performance, shielding mostly occurred in reflection mechanism. In addition to that, the WP/GNP-5 nanocomposite with 9 wt% graphene nanoplatelets revealed the highest value of EMI shielding effectiveness (approximately 26 dB) over 8–9 GHz frequency range.


Reflection Loss Electromagnetic Interference Electromagnetic Property Shield Effectiveness Ethylene Vinyl Acetate 



We would like to thank Graf Nano Technological Materials Industry and Trade Ltd. Co. (Founder & Chief Science Officer: I. Karteri) and Kahramanmaras Sütçü Imam University (Project No.: 2016/6-55M ) for their financial supports.


  1. 1.
    S. Kashi, R.K. Gupta, T. Baum, N. Kao, S.N. Bhattacharya, “Morphology, electromagnetic properties and electromagnetic interference shielding performance of poly lactide/graphene nanoplatelet nanocomposites. Mater. Des. 95, 119–126 (2016)CrossRefGoogle Scholar
  2. 2.
    L.-L. Wang, B.-K. Tay, K.-Y. See, Z. Sun, L.-K. Tan, D. Lua, “Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing”. Carbon 47, 1905–1910 (2009)CrossRefGoogle Scholar
  3. 3.
    S.-T. Hsiao, C.-C. M. Ma, W-H. Liao, Y-S. Wang, S-M. Li, Y-C. Huang, R-B. Yang, and W-F. Liang, “Lightweight and Flexible Reduced Graphene Oxide/Water-Borne Polyurethane Composites with High Electrical Conductivity and Excellent Electromagnetic Interference Shielding Performance, ACS Appl. Mater. 6, 10667–10678 (2014).CrossRefGoogle Scholar
  4. 4.
    W. Al-Shabib, S. W. Lachowicz, “Modelling of Intrinsic Conducting Polymer for Wi-Fi Electromagnetic Interference Shielding,” Science and Information Conference 2013, London, UK, 7–9 October 2013.Google Scholar
  5. 5.
    P.C.P. Watts, W.K. Hsu, A. Barnes, B. Chambers, “High permittivity from defective multiwalled carbon nanotubes in the X-Band. Adv. Mater. 15, 7–8 (2003)CrossRefGoogle Scholar
  6. 6.
    L. Kong, X. Yin, X. Yuan, Y. Zhang, X. Liu, L. Cheng, L. Zang, “Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites”. Carbon 73, 185–193 (2014)CrossRefGoogle Scholar
  7. 7.
    B. Wen, X.X. Wang, W.Q. Cao, H.L. Shi, M.M. Lu, G. Wang, H.B. Jin, W.Z. Wang, J. Yuan, M.S. Cao, “Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world”. Nanoscale 6, 5754–5761 (2014)CrossRefGoogle Scholar
  8. 8.
    B. Shen, W. Zhai, W. Zheng, “Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24, 4548–4556 (2014)Google Scholar
  9. 9.
    B.J. Madhu, M. Gurusiddesh, T. Kiran, B. Shruthi, H.S. Jayanna, “Structural, dielectric, ac conductivity and electromagnetic shielding properties of polyaniline/Ni0.5Zn0.5Fe2O4 composites”. J. Mater. Sci. 27, 7760–7766 (2016)Google Scholar
  10. 10.
    R.H. Guo, S.Q. Jiang, C.W.M. Yuen, M.C.F. Ng, “Microstructure and electromagnetic interference shielding effectiveness of electroless Ni–P plated polyester fabric”. J. Mater. Sci. 20, 735–740 (2009)Google Scholar
  11. 11.
    F. Shahzad, S. Yu, P. Kumar, J.-W. Lee, Y.-H. Kim, S.M. Hong, C.M. Koo, “Sulfur doped graphene/polystyrene nanocomposites for electromagnetic interference shielding. Compos. Struct. 133, 1267–1275 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Faisal, S. Khasim, “Broadband electromagnetic shielding and dielectric properties of polyaniline–stannous oxide composites”. J. Mater. Sci. 24, 2202–2210 (2013)Google Scholar
  13. 13.
    N.C. Das, T.K. Chaki, D. Khastgir, and A. Chakraborty, “Electromagnetic interference shielding effectiveness of conductive carbon black and carbon fiber-filled composites based on rubber and rubber blends. Adv. Polym. Technol. 20, 226–236 (2001).CrossRefGoogle Scholar
  14. 14.
    M.H. Al-Saleh, U. Sundararaj, “X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites “. J. Phys. D 46, 35304 (2013)CrossRefGoogle Scholar
  15. 15.
    Y. Yang, M.C. Gupta, and K.L. Dudley, Towards cost-efficient EMI shielding materials using carbon nanostructure-based nanocomposites. Nanotechnology 18, 345701 (2007)CrossRefGoogle Scholar
  16. 16.
    S.H. Park, P.T. Theilmann, P.M. Asbeck, P.R. Bandaru, “Enhanced electromagnetic interference shielding through the use of functionalized carbon nanotube-reactive polymer composites IEEE transactions on. Nanotechnology 9, 4 (2010)Google Scholar
  17. 17.
    L. Nayak, T.K. Chaki, D. Khastgir, “Electrical percolation behavior and electromagnetic shielding effectiveness of polyimide nanocomposites filled with carbon nanofibers. J. Appl. Polym. Sci. 131, 1–12 (2014)CrossRefGoogle Scholar
  18. 18.
    L.-L. Wang, B.-K. Tay, K.-Y. See, Z. Sun, L.-K. Tan, and D. Lua, “Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing. Carbon N. Y. 47 1905–1910 (2009).CrossRefGoogle Scholar
  19. 19.
    M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, “EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study, Carbon N. Y. 60, 146–156 (2013).CrossRefGoogle Scholar
  20. 20.
    N.C. Das, T.K. Chaki, D. Khastgir, A. Chakraborty, ‘Electromagnetic interference shielding effectiveness of ethylene vinyl acetate based conductive composites containing carbon fillers’. J. Appl. Polym. Sci. 80, 1601–1608 (2001)CrossRefGoogle Scholar
  21. 21.
    I. Karteri, M. Güneş, Synthesis of reduced graphene oxide-phosphorus nanocomposites with a new approach for dye sensitized solar cells applications. J. Mater. Sci. 27, 11502–11508 (2016)Google Scholar
  22. 22.
    A.K. Geim, Graphene: status and prospects, Science 324, 1530–1534 (2009)CrossRefGoogle Scholar
  23. 23.
    S.K. Hong, K.Y. Kim, T.Y. Kim, J.H. Kim, S.W. Park, J.H. Kim, B.J. Cho, “Electromagnetic interference shielding effectiveness of monolayer graphene. Nanotechnology 23, 455704 (2012)CrossRefGoogle Scholar
  24. 24.
    C. Wan, J. Li, “Graphene oxide/cellulose aerogels nanocomposite: Preparation, pyrolysis, and application for electromagnetic interference shielding. Carbohydr. Polym. 150, 172–179 (2016)CrossRefGoogle Scholar
  25. 25.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, “Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  26. 26.
    P. Modak, S.B. Kondawar, D.V. Nandanwar, “Synthesis and characterization of conducting polyaniline/graphene nanocomposites for electromagnetic interference shielding.” Proced. Mater. Sci. 10, 588–594 (2015)CrossRefGoogle Scholar
  27. 27.
    H. Duan, J. Yang, Y. Yang, G. Zhao, Y. Liu, “TiO2 hybrid polypropylene/nickel coated glass fiber conductive composites for highly efficient electromagnetic interference shielding”. J. Mater. Sci. (2016) doi: 10.1007/s10854-016-6244-0 Google Scholar
  28. 28.
    J.L. Wojkiewicz, N.N. Hoang, N. Redon, J.L. Miane, “Intrinsically Conducting Nanocomposites: High Performance Electromagnetic Shielding Materials, (IEEE, New york, 2005), pp. 7803–9374Google Scholar
  29. 29.
    Y. Yang, M. C. Gupta, and K. L. Dudley, “Studies on electromagnetic interference shielding characteristics of metal nanoparticle- and carbon nanostructure-filled polymer composites in the Ku-band frequency, Micro & Nano Lett. 2(4), 85–89 (2007).CrossRefGoogle Scholar
  30. 30.
    L. Jin, Z. Haiyan, L. Ping Y. Xijiang, and Z. Guoxun, “The electromagnetic shielding effectiveness of a low-cost and transparent stainless steel fiber/silicone resin composite, IEEE Trans. Electromagn. Compat. 56(2), 328–334 (2014).CrossRefGoogle Scholar
  31. 31.
    D.D.L. Chung, “Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39, 279–285 (2001)CrossRefGoogle Scholar
  32. 32.
    P. Verma, P. Saini, V. Choudhary, “Designing of carbon nanotube/polymer composites using melt recirculation approach: effect of aspect ratio on mechanical, electrical and EMI shielding response. Mater. Des. 88, 269–277 (2015)CrossRefGoogle Scholar
  33. 33.
    L. Monnereau, L. Urbanczyk, J.-M. Thomassin, T. Pardoen, C. Bailly, I. Huynen, C. Jerome, C. Detrembleur, “Gradient foaming of polycarbonate/carbon nanotube based nanocomposites with supercritical carbon dioxide and their EMI shielding performances. Polymer 59(117), 123 (2015)Google Scholar
  34. 34.
    A.N. Saboor, H.M. Khan, K. Cheema, A.Shafqat Yaqoob, “Effect of polyaniline on the dielectric and EMI shielding behaviors of styrene acrylonitrile”. J. Mater. Sci. 27, 9634–9641 (2016)Google Scholar
  35. 35.
    N.C. Das, D. Khastgir, T.K. Chaki, A. Chakraborty, “Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites. Compos. Part A 31, 1069–1081 (2000)CrossRefGoogle Scholar
  36. 36.
    Q. J. Krueger, and J. A. King, “Synergistic effects of carbon fillers on shielding effectiveness in conductive nylon 6,6- and polycarbonate-based resins, Adv. Polym. Tech. 22(2), 96–111 (2003).CrossRefGoogle Scholar
  37. 37.
    H. Liu, J. Li, L. Wang, “Electroless nickel plating on APTHS modified wood veneer for EMI shielding”. Appl. Surf. Sci. 257(4), 1325–1330 (2010)CrossRefGoogle Scholar
  38. 38.
    B. Yuan, L. Yu, L. Sheng, K. An, X. Zhao, “Comparison of electromagnetic interference shielding properties between single-wall carbon nanotube and graphene sheet/polyaniline composites. J. Phys. D 45, 235108 (2012)CrossRefGoogle Scholar
  39. 39.
    H.M. Kim, K. Kim, C.Y. Lee, J. Joo, S.J. Cho, H.S. Yoon, D.A. Pejaković, J.W. Yoo, A.J. Epstein, “Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst”. Appl. Phys. Lett. 84(4), 589–591 (2004)CrossRefGoogle Scholar
  40. 40.
    X. Huang, B. Dai, Y. Ren, J. Xu, C. Zhao, “Controllable synthesis and electromagnetic interference shielding properties of magnetic CoNi alloy nanoparticles coated on biocarbon nanofibers”. J. Mater. Sci. 26, 2584–2588 (2015)Google Scholar
  41. 41.
    B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, “Lightweight, multifunctional polyetherimide/graphene@ Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. & Interfaces 5(21), 11383–11391 (2013)CrossRefGoogle Scholar
  42. 42.
    J. Chen, J. Wu, H. Ge, D. Zhao, C. Liu, X. Hong, “Reduced graphene oxide deposited carbon fiber reinforced polymer composites for electromagnetic interference shielding. Compos. Part A 82, 141–150 (2016)CrossRefGoogle Scholar
  43. 43.
    J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, “Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47, 922–925 (2009)CrossRefGoogle Scholar
  44. 44.
    K. Singh, A. Ohlan, V.H. Pham, R. Balasubramaniyan, S. Varshney, J. Jang, S.H. Hur, W.M. Choi, M. Kumar, S.K. Dhawan, B.S. Kong, J.S. Chung, Nanoscale 5, 2411 (2013)CrossRefGoogle Scholar
  45. 45.
    H. Wang, K. Teng, C. Chen, X. Li, Z. Xu, L. Chen, H. Fu, L. Kuang, M. Ma, L. Zhao, “Conductivity and electromagnetic interference shielding of graphene-based architectures using MWCNTs as free radical scavenger in gamma-irradiation”. Mater. Lett. 186, 78–81 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Energy Systems EngineeringKahramanmaraş Sütçü İmam UniversityKahramanmaraşTurkey
  2. 2.Department of Electrical &Electronics EngineeringKahramanmaraş Sütçü İmam UniversityKahramanmaraşTurkey

Personalised recommendations