Skip to main content
Log in

Si/graphene composite as high-performance anode materials for Li-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Diatomite, treated by low temperature magnesiothermic reduction as the Si source, was used to synthesize the porous Si/graphene (Si/G) composite. Graphene deposited on the surface of porous Si by a chemical vapor deposition (CVD) process not only buffered the volume effect, but also optimized the electrical conductivity. The obtained Si/G composites exhibited superior reversible capacity of about 1173.6 mAh·g−1 and the current density of 100 mA·g−1 with an excellent capacity retention in the following circulations. Moreover, the composite possesses an excellent rate performance even at high current density. The results suggested that the successful composite of porous Si and graphene could effectively improve the electrochemical performance of Si-based materials and it also offered a new way for the application of diatomite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. U. Kasavajjula, C.S. Wang, A.J. Appleby, J. Power Sources 163, 1003 (2007)

    Article  Google Scholar 

  2. H. Kim, B. Han, J. Choo, J. Cho, Angew. Chem. Int. Edit. 47, 10151 (2008)

    Article  Google Scholar 

  3. L. Gan, H. Guo, Z. Wang, X. Li, W. Peng, J. Wng, Electrochim. Acta 104, 117 (2013)

    Article  Google Scholar 

  4. M.N. Obrovac, L. Christensen, Electrochem. Solid-State Lett. 7, A93 (2004)

    Article  Google Scholar 

  5. C.K. Chan, R. Ruffo, S.S. Hong, R.A. Huggins, Y. Cui, J. Power Sources 189, 34 (2009)

    Article  Google Scholar 

  6. B.C. Kim, H. Ueno, T. Satou, T. Fuse, T. Ishihara, M. Ue, M. Senna, J. Electrochem. Soc. 152, A523 (2005)

    Article  Google Scholar 

  7. X. Xin, X.F. Zhou, F. Wang, X.Y. Yao, X.X. Xu, Y.M. Zhu, Z.P. Liu, J. Mater. Chem. 22, 7724 (2012)

    Article  Google Scholar 

  8. A. Magasinki, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, Nat. Mater. 9, 353 (2010)

    Article  Google Scholar 

  9. B.M. Bang, J.I. Lee, H.J. Kim, J. Cho, S.J. Park, Adv. Energy Mater. 2, 878 (2012)

    Article  Google Scholar 

  10. D.Y. Chen, X. Mei, G. Ji, M.H. Lu, J.P. Xie, J.M. Lu, J.Y. Lee, Angew. Chem. Int. Edit. 51, 2409 (2012)

    Article  Google Scholar 

  11. S.R. Gowda, V. Pushparaj, S. Herle, G. Girishkumar, J.G. Gordon, H. Gullapalli, X.B. Zhan, P.M. Ajayan, A.L.M. Reddy, Nano Lett. 12, 6060 (2012)

    Article  Google Scholar 

  12. M. Thakur, S.L. Sinsabaugh, M.J. Isaacson, M.S. Wong, S.L. Biswal, Sci. Rep. 2, 822 (2012)

    Article  Google Scholar 

  13. R. Yi, F. Dai, M.L. Gordin, S.R. Chen, D.H. Wang, Adv. Energy Mater. 3, 295 (2013)

    Article  Google Scholar 

  14. N. Liu, Z.D. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W.T. Zhao, Y. Cui, Nat. Nanotechnol. 9, 187 (2014)

    Article  Google Scholar 

  15. X. Li, M. Gu, S. Hu, R. Kennard, P. Yan, X. Chen, C. Wang, M.J. Sailor, J.G. Zhang, J. Liu, Nat. Commun. 5, 4105 (2014)

    Google Scholar 

  16. R. Yi, J.T. Zai, F. Dai, M.L. Gordin, D.H. Wang, Nano Energy 6, 211 (2014)

    Article  Google Scholar 

  17. Z.D. Lu, N. Liu, H.W. Lee, J. Zhao, W.Y. Li, Y.Z. Li, Y. Cui, ACS Nano 9, 2540 (2015)

    Article  Google Scholar 

  18. B.K.S. Novoseolov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2010)

    Article  Google Scholar 

  19. X. Zhou, T. Wu, B. Hu, G. Yang, B. Han, Chem. Commun. 46, 3663 (2010)

    Article  Google Scholar 

  20. H. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Nano Lett. 11, 2644 (2011)

    Article  Google Scholar 

  21. X.L. Wang, W.Q. Han, ACS Appl. Mater. Int. 2, 3709 (2010)

    Article  Google Scholar 

  22. H. Jia, P. Gao, J. Yang, J. Wang, Y. Nuli, Z. Yang, Adv. Energy Mater. 1, 1036 (2011)

    Article  Google Scholar 

  23. S. Yang, X. Feng, L. Wang, K. Tang, J. Maier, K. Mullen, Angew. Chem. Int. Edit. 49, 4795 (2010)

    Article  Google Scholar 

  24. X. Zhou, Y.X. Yin, L.J. Wan, Y.G. Guo, Chem. Commun. 48, 2198 (2012)

    Article  Google Scholar 

  25. Y. Sun, Q. Wu, G. Shi, Energy Environ. Sci. 4, 1113 (2011)

    Article  Google Scholar 

  26. H.Y. Lee, S.M. Lee, Electrochem. Commun. 6, 465 (2004)

    Article  Google Scholar 

  27. G.X. Wang, J. Yao, H.K. Liu, Electrochem. Solid-State Lett. 7, A250 (2004)

    Article  Google Scholar 

  28. D.P. Wong, H.P. Tseng, Y.T. Chen, B.J. Hwang, L.C. Chen, K.H. Chen, Carbon 63, 397 (2013)

    Article  Google Scholar 

  29. S. Kim, P.N. Kumta, J. Power Sources 136, 145 (2004)

    Article  Google Scholar 

  30. G.X. Wang, J.H. Ahn, J. Yao, S. Bewlay, H.K. Liu, Electrochem. Commun. 6, 689 (2004)

    Article  Google Scholar 

  31. N. Dimov, S. Kugino, M. Yoshio, J. Power Sources 136, 108 (2004)

    Article  Google Scholar 

  32. M. Holzapfel, H. Buqa, W. Scheifele, P. Novk, F.M. Petrat, Chem. Commun. 12, 1566 (2005)

    Article  Google Scholar 

  33. X.H. Cao, Y.M. Shi, W.H. Shi, X. Huang, Q.Y. Yan, Q.C. Zhang, H. Zhang, Small 7, 3163 (2011)

    Article  Google Scholar 

  34. M. Holzapfel, H. Buqa, F. Krumeich, P. Novak, F.M. Petrat, C. Velt, Electrochem. Solid-State Lett. 8, A516 (2005)

    Article  Google Scholar 

  35. L.W. Ji, A. Ismach, Y.G. Zhang, H.H. Zheng, Z.K. Tan, S.D. Xun, E. Lin, V. Battaglia, V. Srinivasan, Nano Energy 1, 164 (2012)

    Article  Google Scholar 

  36. V. Chabot, K. Feng, H.W. Park, F.M. Hassan, A.R. Elsayed, A. Yu, X.C. Xiao, Z.W. Chen, Electrochim. Acta 130, 127 (2014)

    Article  Google Scholar 

  37. K. Raidongia, A. Nag, K.P.S.S. Hembram, U.V. Waghmare, R. Datta, C.N.R. Rao, Chem. Eur. J. 16, 149 (2010)

    Article  Google Scholar 

  38. H.F. Xiang, K. Zhang, G. Ji, J.Y. Lee, C. Zou, X.D. Chen, J.S. Wu, Carbon 49, 1787 (2011)

    Article  Google Scholar 

  39. J. Guo, X. Chen, C. Wang, J. Mater. Chem. 20, 5035 (2010)

    Article  Google Scholar 

  40. J.T. McCann, B. Lim, R. Ostermann, M. Rycenga, M. Marquez, Y. Xia, Nano Lett. 7, 2470 (2007)

    Article  Google Scholar 

  41. Z.F. Li, H.Y. Zhang, Q. Liu, Y.D. Liu, L. Stanciu, J. Xie, ACS Appl. Mater. Int. 6, 5996 (2014)

    Article  Google Scholar 

  42. J. Luo, X. Zhao, J. Huang, J. Wu, H.D. Jang, H.H. Kung, J. Phy. Chem. Lett. 64, 83 (2012)

    Google Scholar 

  43. X.H. Liu, C.L. Yan, O.G. Schmidt, J. Zhang, W.P. Si, L.X. Xi, B. Eichler, ACS Nano 9, 1 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the industrial technology innovation strategic alliance project of science and technology department of Jilin province (20130305017 GX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-jie Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Yj., Chu, H., Zhao, Lw. et al. Si/graphene composite as high-performance anode materials for Li-ion batteries. J Mater Sci: Mater Electron 28, 6657–6663 (2017). https://doi.org/10.1007/s10854-017-6357-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6357-0

Keywords

Navigation