Si/graphene composite as high-performance anode materials for Li-ion batteries

  • Ying-jie Zhang
  • Hua Chu
  • Li-wen Zhao
  • Long-fei Yuan


Diatomite, treated by low temperature magnesiothermic reduction as the Si source, was used to synthesize the porous Si/graphene (Si/G) composite. Graphene deposited on the surface of porous Si by a chemical vapor deposition (CVD) process not only buffered the volume effect, but also optimized the electrical conductivity. The obtained Si/G composites exhibited superior reversible capacity of about 1173.6 mAh·g−1 and the current density of 100 mA·g−1 with an excellent capacity retention in the following circulations. Moreover, the composite possesses an excellent rate performance even at high current density. The results suggested that the successful composite of porous Si and graphene could effectively improve the electrochemical performance of Si-based materials and it also offered a new way for the application of diatomite.


Diatomite Solid Electrolyte Interface Solid Electrolyte Interface Layer Solid Electrolyte Interface Film Magnesiothermic Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was supported by the industrial technology innovation strategic alliance project of science and technology department of Jilin province (20130305017 GX).


  1. 1.
    U. Kasavajjula, C.S. Wang, A.J. Appleby, J. Power Sources 163, 1003 (2007)CrossRefGoogle Scholar
  2. 2.
    H. Kim, B. Han, J. Choo, J. Cho, Angew. Chem. Int. Edit. 47, 10151 (2008)CrossRefGoogle Scholar
  3. 3.
    L. Gan, H. Guo, Z. Wang, X. Li, W. Peng, J. Wng, Electrochim. Acta 104, 117 (2013)CrossRefGoogle Scholar
  4. 4.
    M.N. Obrovac, L. Christensen, Electrochem. Solid-State Lett. 7, A93 (2004)CrossRefGoogle Scholar
  5. 5.
    C.K. Chan, R. Ruffo, S.S. Hong, R.A. Huggins, Y. Cui, J. Power Sources 189, 34 (2009)CrossRefGoogle Scholar
  6. 6.
    B.C. Kim, H. Ueno, T. Satou, T. Fuse, T. Ishihara, M. Ue, M. Senna, J. Electrochem. Soc. 152, A523 (2005)CrossRefGoogle Scholar
  7. 7.
    X. Xin, X.F. Zhou, F. Wang, X.Y. Yao, X.X. Xu, Y.M. Zhu, Z.P. Liu, J. Mater. Chem. 22, 7724 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Magasinki, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, Nat. Mater. 9, 353 (2010)CrossRefGoogle Scholar
  9. 9.
    B.M. Bang, J.I. Lee, H.J. Kim, J. Cho, S.J. Park, Adv. Energy Mater. 2, 878 (2012)CrossRefGoogle Scholar
  10. 10.
    D.Y. Chen, X. Mei, G. Ji, M.H. Lu, J.P. Xie, J.M. Lu, J.Y. Lee, Angew. Chem. Int. Edit. 51, 2409 (2012)CrossRefGoogle Scholar
  11. 11.
    S.R. Gowda, V. Pushparaj, S. Herle, G. Girishkumar, J.G. Gordon, H. Gullapalli, X.B. Zhan, P.M. Ajayan, A.L.M. Reddy, Nano Lett. 12, 6060 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Thakur, S.L. Sinsabaugh, M.J. Isaacson, M.S. Wong, S.L. Biswal, Sci. Rep. 2, 822 (2012)CrossRefGoogle Scholar
  13. 13.
    R. Yi, F. Dai, M.L. Gordin, S.R. Chen, D.H. Wang, Adv. Energy Mater. 3, 295 (2013)CrossRefGoogle Scholar
  14. 14.
    N. Liu, Z.D. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W.T. Zhao, Y. Cui, Nat. Nanotechnol. 9, 187 (2014)CrossRefGoogle Scholar
  15. 15.
    X. Li, M. Gu, S. Hu, R. Kennard, P. Yan, X. Chen, C. Wang, M.J. Sailor, J.G. Zhang, J. Liu, Nat. Commun. 5, 4105 (2014)Google Scholar
  16. 16.
    R. Yi, J.T. Zai, F. Dai, M.L. Gordin, D.H. Wang, Nano Energy 6, 211 (2014)CrossRefGoogle Scholar
  17. 17.
    Z.D. Lu, N. Liu, H.W. Lee, J. Zhao, W.Y. Li, Y.Z. Li, Y. Cui, ACS Nano 9, 2540 (2015)CrossRefGoogle Scholar
  18. 18.
    B.K.S. Novoseolov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2010)CrossRefGoogle Scholar
  19. 19.
    X. Zhou, T. Wu, B. Hu, G. Yang, B. Han, Chem. Commun. 46, 3663 (2010)CrossRefGoogle Scholar
  20. 20.
    H. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Nano Lett. 11, 2644 (2011)CrossRefGoogle Scholar
  21. 21.
    X.L. Wang, W.Q. Han, ACS Appl. Mater. Int. 2, 3709 (2010)CrossRefGoogle Scholar
  22. 22.
    H. Jia, P. Gao, J. Yang, J. Wang, Y. Nuli, Z. Yang, Adv. Energy Mater. 1, 1036 (2011)CrossRefGoogle Scholar
  23. 23.
    S. Yang, X. Feng, L. Wang, K. Tang, J. Maier, K. Mullen, Angew. Chem. Int. Edit. 49, 4795 (2010)CrossRefGoogle Scholar
  24. 24.
    X. Zhou, Y.X. Yin, L.J. Wan, Y.G. Guo, Chem. Commun. 48, 2198 (2012)CrossRefGoogle Scholar
  25. 25.
    Y. Sun, Q. Wu, G. Shi, Energy Environ. Sci. 4, 1113 (2011)CrossRefGoogle Scholar
  26. 26.
    H.Y. Lee, S.M. Lee, Electrochem. Commun. 6, 465 (2004)CrossRefGoogle Scholar
  27. 27.
    G.X. Wang, J. Yao, H.K. Liu, Electrochem. Solid-State Lett. 7, A250 (2004)CrossRefGoogle Scholar
  28. 28.
    D.P. Wong, H.P. Tseng, Y.T. Chen, B.J. Hwang, L.C. Chen, K.H. Chen, Carbon 63, 397 (2013)CrossRefGoogle Scholar
  29. 29.
    S. Kim, P.N. Kumta, J. Power Sources 136, 145 (2004)CrossRefGoogle Scholar
  30. 30.
    G.X. Wang, J.H. Ahn, J. Yao, S. Bewlay, H.K. Liu, Electrochem. Commun. 6, 689 (2004)CrossRefGoogle Scholar
  31. 31.
    N. Dimov, S. Kugino, M. Yoshio, J. Power Sources 136, 108 (2004)CrossRefGoogle Scholar
  32. 32.
    M. Holzapfel, H. Buqa, W. Scheifele, P. Novk, F.M. Petrat, Chem. Commun. 12, 1566 (2005)CrossRefGoogle Scholar
  33. 33.
    X.H. Cao, Y.M. Shi, W.H. Shi, X. Huang, Q.Y. Yan, Q.C. Zhang, H. Zhang, Small 7, 3163 (2011)CrossRefGoogle Scholar
  34. 34.
    M. Holzapfel, H. Buqa, F. Krumeich, P. Novak, F.M. Petrat, C. Velt, Electrochem. Solid-State Lett. 8, A516 (2005)CrossRefGoogle Scholar
  35. 35.
    L.W. Ji, A. Ismach, Y.G. Zhang, H.H. Zheng, Z.K. Tan, S.D. Xun, E. Lin, V. Battaglia, V. Srinivasan, Nano Energy 1, 164 (2012)CrossRefGoogle Scholar
  36. 36.
    V. Chabot, K. Feng, H.W. Park, F.M. Hassan, A.R. Elsayed, A. Yu, X.C. Xiao, Z.W. Chen, Electrochim. Acta 130, 127 (2014)CrossRefGoogle Scholar
  37. 37.
    K. Raidongia, A. Nag, K.P.S.S. Hembram, U.V. Waghmare, R. Datta, C.N.R. Rao, Chem. Eur. J. 16, 149 (2010)CrossRefGoogle Scholar
  38. 38.
    H.F. Xiang, K. Zhang, G. Ji, J.Y. Lee, C. Zou, X.D. Chen, J.S. Wu, Carbon 49, 1787 (2011)CrossRefGoogle Scholar
  39. 39.
    J. Guo, X. Chen, C. Wang, J. Mater. Chem. 20, 5035 (2010)CrossRefGoogle Scholar
  40. 40.
    J.T. McCann, B. Lim, R. Ostermann, M. Rycenga, M. Marquez, Y. Xia, Nano Lett. 7, 2470 (2007)CrossRefGoogle Scholar
  41. 41.
    Z.F. Li, H.Y. Zhang, Q. Liu, Y.D. Liu, L. Stanciu, J. Xie, ACS Appl. Mater. Int. 6, 5996 (2014)CrossRefGoogle Scholar
  42. 42.
    J. Luo, X. Zhao, J. Huang, J. Wu, H.D. Jang, H.H. Kung, J. Phy. Chem. Lett. 64, 83 (2012)Google Scholar
  43. 43.
    X.H. Liu, C.L. Yan, O.G. Schmidt, J. Zhang, W.P. Si, L.X. Xi, B. Eichler, ACS Nano 9, 1 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ying-jie Zhang
    • 1
  • Hua Chu
    • 1
  • Li-wen Zhao
    • 1
  • Long-fei Yuan
    • 1
  1. 1.Northeast Electric Power UniversityJilinPeople’s Republic of China

Personalised recommendations