Structural, optical properties, impedance spectroscopy studies and electrical conductivity of SnO2 nanoparticles prepared by polyol method

  • Wissem Ben Soltan
  • Saber Nasri
  • Mohamed Saber Lassoued
  • Salah Ammar


Tin oxide nanoparticles (SnO2) with controlled shapes and sizes were prepared at 160 °C by a simple polyol method. The formation of typical rutilE−type was confirmed by X-ray diffraction studies, and it was found to be a tetragonal structure. X-ray diffraction and transmission electron microscopy show the average diameter of SnO2 nanoparticles about 13 nm obtained after calcination at 700 °C. Moreover, the calcined sample is composed of an aggregated network of almost spherical nanoparticles. The optical property was investigated using an UV–visible Diffuse Reflectance Spectroscopy, the band gap is found to be 3.4 eV. Electrical properties were performed using impedance spectroscopy technique in the frequency range 6 KHz–1 MHz at various temperatures (523–723 K). The complex impedance diagram at different temperatures showed a single semicircle, implying that the response originated from a single capacitive element corresponding to the grains. Ac and dc conductivities were studied to explore the mechanisms of conduction. In fact, AC conductivity is found to follow Jonsche’s s universal power law. As a result, the exponent‘s’ was found to increase with increase in temperature. Further analysis revealed that, the non overlapping small polaron tunneling model mechanism was applicable at the present temperatures.


SnO2 Equivalent Circuit SnO2 Nanoparticles Polyol Method Visible Diffuse Reflectance Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Gubbala, V. Chakrapani, V. Kumar, M.K. Sunkara, Adv. Funct. Mater. 18, 2411 (2008)CrossRefGoogle Scholar
  2. 2.
    Y. Yu, C.H. Chen, Y. Shi, Adv. Mater. 19, 993 (2007)CrossRefGoogle Scholar
  3. 3.
    J. Zhang, S.R. Wang, M.J. Xu, Y. Wang, H.J. Xia, S.M. Zhang, J. Phys. Chem. C 113, 1662 (2009)CrossRefGoogle Scholar
  4. 4.
    Z.P. Li, Q.Q. Zhao, W.L. Fan, J.H. Zhan, Nanoscale 3, 1646–1652 (2011)CrossRefGoogle Scholar
  5. 5.
    L. Cojocaru, C. Olivier, T. Toupance, E. Sellier, L. Hirsch, J. Mater. Chem. A 1, 13789 (2013)CrossRefGoogle Scholar
  6. 6.
    X.W. Lou, Y. Wang, C.L. Yuan, Y.L. Jim, A.A. Lynden, Adv. Mater. 18, 2325–2329 (2006)CrossRefGoogle Scholar
  7. 7.
    A. Bhattacharjee, M. Ahmaruzzaman, Mater. Lett. 139, 418–421 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Aziz, S.S. Abbas, WRW Baharom, Mater. Lett. 91, 31–34 (2012)CrossRefGoogle Scholar
  9. 9.
    J.K. Jian, X.L. Chen, W.J. Wang, L. Dai, X.P. Xu, Appl. Phys. A 76, 291–294 (2003).CrossRefGoogle Scholar
  10. 10.
    X.L. Ma, Y. Li, Y.L. Zhu, Chem. Phys. Lett. 376, 794–798 (2003)CrossRefGoogle Scholar
  11. 11.
    B. Cheng, M.R. Joette, W.S. Shi, L. Zhang, T.S. Edward, J. Am. Chem. Soc. 126, 5972–5973 (2004)CrossRefGoogle Scholar
  12. 12.
    T. Hyodo, S. Abe, Y. Shimizu, M. Egashira, Sens. Actuators B 93, 590–600 (2003)CrossRefGoogle Scholar
  13. 13.
    G.C. Xi, Y.T. He, Q. Zhang, H.Q. Xiao, X. Wang, C. Wang, J. Phys. Chem. C 112, 11645–11649 (2008)CrossRefGoogle Scholar
  14. 14.
    W.B. Soltan, M. Mbarki, S. Ammar, O. Babot, T. Toupance, J. Mater. Sci. 26, 1612–1618 (2015)Google Scholar
  15. 15.
    W.B. Soltan, M. Mbarki, S. Ammar, O. Babot, T. Toupance, Opt. Mater. 54, 139–146 (2016)CrossRefGoogle Scholar
  16. 16.
    W.B. Soltan, M. Mbarki, R. Bargougui, S. Ammar, O. Babot, T. Toupance, Opt. Mater. 58, 142–150 (2016)CrossRefGoogle Scholar
  17. 17.
    S.V. Manorama, C.V.G. Reddy, V.J. Rao, Nanostruct. Mater. 11, 643–649 (1999)CrossRefGoogle Scholar
  18. 18.
    B. Cheng, J.M. Russell, W. Shi, L. Zhang, E.T. Samulski, J. Am. Chem. Soc. 126, 5972 (2004)CrossRefGoogle Scholar
  19. 19.
    F. Du, Z. Guo, G. Li, Mater. Lett. 59, 2563 (2005)CrossRefGoogle Scholar
  20. 20.
    S. Fujihara, T. Maeda, H. Ohgi, E. Hosono, H. Imai, S.H. Kim, Langmuir 20, 6476 (2004)CrossRefGoogle Scholar
  21. 21.
    H. Yang, X. Song, X. Zhang, W. Ao, G. Qiu, Mater. Lett 57, 3124 (2003)CrossRefGoogle Scholar
  22. 22.
    Y. Liu, F. Yang, X. Yang, Colloid Surf. A 312, 219–225 (2008)CrossRefGoogle Scholar
  23. 23.
    J. Pena, J. Perez-Pariente, M. Vallet-Regi, J. Mater. Chem. 13, 2290–2296 (2003)CrossRefGoogle Scholar
  24. 24.
    D. Davazoglou, Thin Solid Film 302, 204 (1997)CrossRefGoogle Scholar
  25. 25.
    H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)CrossRefGoogle Scholar
  26. 26.
    E. Barsoukov, J.R. Macdonald, in Impedance Spectroscopy Theory, Experiment, and Applications, 2nd edn. (Wiley, Hoboken, 2005), pp. 1–20CrossRefGoogle Scholar
  27. 27.
    J. Rodriguez Carjaval, in XVth Congress International Union of Crystallography, proceedings of the satellite meeting on powder diffraction, Toulouse, p. 199Google Scholar
  28. 28.
    P. Kirszensztejn, A. Tolinska, R. Przekop, J. Therm. Anal. Calorim. 95, 93 (2009)CrossRefGoogle Scholar
  29. 29.
    S.B. Ogale, R.J. Choudhary, J.P. Buban, S.E. Lofland, Phys. Rev. Lett. 91, 077205 (2003)CrossRefGoogle Scholar
  30. 30.
    N. Jiamiao, X. Zhao, J. Zhao, Surf. Coat. Technol. 206, 4356 (2012)CrossRefGoogle Scholar
  31. 31.
    K. Melghit, K. Bouziane, J. Am. Ceram. Soc. 90, 2420–2423 (2007)CrossRefGoogle Scholar
  32. 32.
    V. Stengl, T.M. Grygar, Int. J. Photoenergy doi: 10.1155/2011/685935 (2011) Article ID 685935Google Scholar
  33. 33.
    G. Yang, Z. Yan, T. Xiao, Appl. Surf. Sci 258, 8704–8712 (2012)CrossRefGoogle Scholar
  34. 34.
    R. Bargougui, A. Oueslati, G. Schmerber, C. Ulhaq-Bouillet, S. Colis, F. Hlel, S. Ammar, A. Dinia, J. Mater. Sci. Mater. Electron. 25, 2066 (2014)CrossRefGoogle Scholar
  35. 35.
    N. Tawichai, K. Sutjarittangtham, T. Tunkasiri, K. Pengpat, G. Rujijanagul, J. Wang, Ceram. Int. 39, S145–S148 (2013)CrossRefGoogle Scholar
  36. 36.
    H. Rahmouni, M. Smari, B. Cherif, E. Dhahrib, K. Khirouni, Dalton Trans. 44, 10457 (2015)CrossRefGoogle Scholar
  37. 37.
    A. Zaafouri, M. Megdiche, M. Gargouri, J. Alloys Compd. 584, 152 (2014)CrossRefGoogle Scholar
  38. 38.
    M. Sassi, A. Bettaibi, A. Oueslati, K. Khirouni, M. Gargouri, J. Alloys Compd. 649, 642–648 (2015)CrossRefGoogle Scholar
  39. 39.
    S. Nasri, M. Megdiche, M. Gargouri Physica B. 451,120127 (2014).CrossRefGoogle Scholar
  40. 40.
    N. Bouazizi, F. Ajala, A. Bettaibi, M. Khelil, A. Benghnia, R. Bargougui, S. Louhichi, L. Labiadh, R. Benslama, B. Chaouachi, K. Khirouni, A. Houas, A. Azzouz, J. Alloys Compd. 656, 146–153 (2015)CrossRefGoogle Scholar
  41. 41.
    R. Zhou, A. Hierlemann, K.D. Schierbaum, K.E. Geckeler, W. Go, Sens. Actuat. B 25, 443–447 (1995)CrossRefGoogle Scholar
  42. 42.
    H. Rahmouni, A. Dhahri, K. Khirouni, J. Alloys Compd. 591, 259–262 (2014)CrossRefGoogle Scholar
  43. 43.
    R.S. Meenakshi Dult, S. Kundu, R. Murugavel, N. Punia, Kishore. Physica B 452, 102–107 (2014)CrossRefGoogle Scholar
  44. 44.
    S. Nasri, M. Megdiche, M. Gargouri, Ionics 21, 67–78 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Wissem Ben Soltan
    • 1
  • Saber Nasri
    • 2
  • Mohamed Saber Lassoued
    • 1
    • 3
  • Salah Ammar
    • 1
    • 4
  1. 1.Département de chimie, Faculté des Sciences de Gabès, Cité ErriadhUniversité de GabèsGabèsTunisia
  2. 2.Condensed Matter Laboratory, Faculty of SciencesUniversity of SfaxSfaxTunisia
  3. 3.Laboratoire des Sciences des Matériaux et de l’Environnement, Faculté des Sciences de SFAXUniversité de SfaxSfaxTunisia
  4. 4.Département de chimie, Faculté des Sciences de BizerteUniversité de CarthageBizerteTunisia

Personalised recommendations