Synthesis and investigation of photonic properties of surface modified ZnO nanoparticles with imine linked receptor as coupling agent- for application in LEDs

  • Charu Madhu
  • Inderpreet Kaur
  • Navneet Kaur


Wet chemical precipitation route is developed for the synthesis of ZnO nanoparticles using a dipodal receptor as capping agent to control the size and shape of ZnO nanoparticles and also to passivate the surface defects. The capping of ZnO nanoparticles with dipodal receptor is characterized with NMR and IR spectroscopy. EDX analyses also confirmed the presence of organic receptors together with ZnO nanoparticles. The morphology and size of surface modified ZnO nanoparticles is checked by SEM, TEM and DLS spectroscopic techniques. The surface decorated ZnO nanoparticles demonstrate emission peak at 333 nm. The emission peak at 333 nm in case of surface capped ZnO demonstrate fewer surface defects present in comparison to their bulk counterpart, where blue, red, green, yellowish green emission peaks are present. The photophysical studies of ZnO nanoparticles are further carried in presence of metal ions where it is observed that the binding with Mn(II) result in increase in fluorescence intensity. The three fold increase in fluorescence intensity of ZnO nanoparticles in presence of Mn(II) can be utilized in case of lighting devices, where high quantum yield is desirable. To the best of our knowledge, this manuscript represents the first surface decorated ZnO nanoparticles for their application in lighting devices.


Dynamic Light Scattering Deep Level Emission Lighting Device Zinc Nitrate Hexahydrate Organic Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



CN acknowledges support from the SAIF department, Panjab University for the TEM, FTIR, Mass spectroscopy facilities provided and CNSNT department, Panjab University for sample nanofabrication facility and Photophysical studies. CN also acknowledges support from IIT Ropar, for providing DLS, SEM and EDX facility.

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.


  1. 1.
    M. Ahmad, J. Zhu, ZnO based advanced functional nanostructures: synthesis, properties and applications. J. Mater. Chem. 21, 599–614 (2011)Google Scholar
  2. 2.
    S. Xu, C. Xu, Y. Liu, Y. Hu, R. Yang, Q. Yang, J.H. Ryou, H.J. Kim, Z. Lochner, S. Choi, R. Dupuis, Z.L. Wang, Ordered nanowire array blue/near-UV light emitting diodes. Adv. Mater. 22, 1–5 (2010)Google Scholar
  3. 3.
    S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. (2011). DOI: 10.1007/s12274-011-0160-7.
  4. 4.
    H. Li, X. Zhang, N. Liu, L. Ding, J. Tao, S. Wang, J. Su, L. Li, Y. Gao, Enhanced photo-response properties of a single ZnO microwire photodetector by coupling effect between localized Schottky barriers and piezoelectric potential. Optics Expr. 23, 21204–21212 (2015)Google Scholar
  5. 5.
    Y. Shirasaki, G.J. Supran, M.G. Bawendi, V. Bulović, Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics. 7, 13–23 (2013)Google Scholar
  6. 6.
    M.J. Anc, N.L. Pickett, N.C. Gresty, J.A Harris, K.C Mishraa, Progress in Non-Cd quantum dot development for lighting applications. ECS J Solid State Sci. Technol. 2 (2), R3071–R3082 (2013)Google Scholar
  7. 7.
    L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, M.V. Kovalenko, Nanocrystals of cesium lead Halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015)Google Scholar
  8. 8.
    M. Opel, S. Geprägs, M. Althammer, T. Brenninger, R. Gross, Laser molecular beam epitaxy of ZnO thin films and heterostructures. J. Phys. D. 47 (3), 034002 (2013) Google Scholar
  9. 9.
    A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc oxide—from synthesis to application: a review. Materials. 7, 2833–2881 (2014). doi: 10.3390/ma7042833
  10. 10.
    Z.L. Wang, ZnO nanowire and nanobelt platform for nanotechnology. Mat. Sci. Eng. R 64, 33–71 (2009)Google Scholar
  11. 11.
    N.L. Tarwal, P.R. Jadhav, S.A. Vanalakar, S.S. Kalagi, R.C. Pawar, J.S. Shaikh, S.S. Mali, D.S. Dalavi, P.S. Shinde, P.S. Patil, Photoluminescence of zinc oxide nanopowder synthesized by a combustion method. Powder Technol. 208, 185–188 (2011)Google Scholar
  12. 12.
    A. Punnoose, K. Dodge, J.W. Rasmussen, J. Chess, D. Wingett, C. Anders, Cytotoxicity of ZnO nanoparticles can be tailored by modifying their surface structure: a green chemistry approach for safer nanomaterials. ACS Sustain. Chem. Eng. 2, 1666–167 (2014)Google Scholar
  13. 13.
    P. Kaur, S.K. Pandey, S. Kumar, N.S. Negi, C.L. Chen, S.M. Rao, M.K. Wu, Tuning ferromagnetism in zinc oxide nanoparticles by chromium doping. Appl. Nanosci. (2014). DOI: 10.1007/s13204-014-0394-2.
  14. 14.
    M. Willander, O. Nur, J.R. Sadaf, M.I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, I. Hussain, Luminescence from Zinc oxide nanostructures and polymers and their hybrid devices. Materials 3, 2643–2667 (2010)Google Scholar
  15. 15.
    H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Adv. Funct. Mater. 20, 561–572 (2010)Google Scholar
  16. 16.
    N. Bano, I. Hussain, O. Nour, M. Williander, P. Klason, A. Henry, Study of luminescent centers in ZnO nanorods catalytically grown on 4 H-p-SiC. Semiconductor Sci. Technol. 24, 125015 (2009)Google Scholar
  17. 17.
    M. Willander, N. Bano, O. Nur, Inorganic–organic ZnO based heterostructures for lighting. ECS Trans. 19 (12), 1–12 (2009)Google Scholar
  18. 18.
    A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. IOP PUBLISHING, Rep. Prog. Phys. 72, 126501 (2009) (29pp).Google Scholar
  19. 19.
    P. Uthirakumar, Y.-S. Lee, E.-K. Suh, C.-H. Hong,; Hybrid fluorescent polymer–zinc oxide nanoparticles: improved efficiency for luminescence conversion LED. J. Lumin. 128, 287–296 (2008)Google Scholar
  20. 20.
    J. McKittrick, M.E. Hannah, A. Piquette, J.K. Han, J.I. Choi, M. Anc, M. Galvez, H. Lugauer, J.B. Talbot, K.C. Mishra, Phosphor selection considerations for near-UV LED solid state lighting. ECS J. Solid State Sci. Technol. 2 (2), R3119–R3131 (2013)Google Scholar
  21. 21.
    T. Oh, C.H. Kim, Correlation between energy gap and defect formation of Al doped zinc oxide on carbon doped silicon oxide. Trans. Electr. Electron. Mater. 15, 207–212 (2014)Google Scholar
  22. 22.
    J. Bollmann, D.K. Simon, Deep level defects in ZnO. Phys. B 439, 14–19 (2014)Google Scholar
  23. 23.
    Z.-Z. Li, M. Bao, S.-H. Chang, Z.-Z. Chen, X.-M. Ma, Green emissions and related defects in ZnO:Ga thin films. Vacuum 86, 1448–1451 (2012)Google Scholar
  24. 24.
    B. Karthikeyan, T. Pandiyarajan, R.V. Mangalaraja, Enhanced blue light emission in transparent ZnO:PVA nanocomposite free standing polymer films. Spectrochim. Acta Part A 152, 485–490 (2016)Google Scholar
  25. 25.
    J. Xu, S. Shi, C. Wang, Y. Zhang, Z. Liu, X. Zhang, L. Li, Effect of surface-to-volume ratio on the optical and magnetic properties of ZnO nanorods by hydrothermal method. J. Alloys Compd. 648, 521–526 (2015)Google Scholar
  26. 26.
    T. Liu, X. Fei, L. Hu, H. Zhang, Y. Li, S. Duo, Effect of substrate surface pretreatment and annealing treatment on morphology, structure, optical and electrical properties of sputtered ZnO films. Superlattices Microstruct. 83, 604–617 (2015)Google Scholar
  27. 27.
    A. Samavati, Z. Othaman, S.K. Ghoshal, M.K. Mustaf, The influence of growth temperature on structural and optical properties of sputtered ZnO QDs embedded in SiO2 matrix. Superlattices Microstruct. 86, 134–142 (2015)Google Scholar
  28. 28.
    O. Gürbüz, I. Kurt, S. Caliskan, S. Güner, Influence of Al concentration and annealing temperature on structural, optical, and electrical properties of Al co-doped ZnO thin films. Appl. Surf. Sci. 349, 549–560 (2015)Google Scholar
  29. 29.
    J.W. Zhang, G. He, T.S. Li, M. Liu, X.S. Chen, Y.M. Liu, Z.Q. Sun, Modulation of microstructure and optical properties of Mo-doped ZnO thin films by substrate temperature. Mater. Res. Bull. 65, 7–13 (2015)Google Scholar
  30. 30.
    E. Topuz, J. Traber, L. Sigg, I. Talinli, Agglomeration of Ag and TiO2 nanoparticles in surface and wastewater: Role of calcium ions and of organic carbon fractions. Environ. Pollut. 204, 313–323 (2015)Google Scholar
  31. 31.
    E. Moghaddam, A.A. Youzbashi, A. Kazemzadeh, M.J. Eshraghi, Preparation of surface-modified ZnO quantum dots through an ultrasound assisted sol–gel process. Appl. Surf. Sci. 346, 111–114 (2015)Google Scholar
  32. 32.
    D. Verma, A.K. Kole, P. Kumbhakar, Red shift of the band-edge photoluminescence emission and effects of annealing and capping agent on structural and optical properties of ZnO nanoparticles. J. Alloys Compd. 625, 122–130 (2015)Google Scholar
  33. 33.
    G. Shan, H. Hao, X. Wang, Z. Shang, Y. Chen, Y. Liu, The effect of PVP on the formation and optical properties ZnO/Ag nanocomposites. Colloids Surf. A 405, 1–5 (2012)Google Scholar
  34. 34.
    K. Raja, P.S. Ramesh, D. Geetha, T. Kokila, R. Sathiyapriya, Synthesis of structural and optical characterization of surfactant capped ZnO nanocrystalline. Spectrochim. Acta Part A 136, 155–161 (2015)Google Scholar
  35. 35.
    C. Narula, I. Kaur, N. Kaur, Characterization and optoelectronics investigations of mixed donor ligand directed semiconductor ZnO nanoparticles. J. Mater. Sci. 26, 791–800 (2015)Google Scholar
  36. 36.
    C. Narula, I. Kaur, N. Kaur, Investigation of optical properties of mixed ligand directed ZnO luminescent nanoparticles for application in light emitting diodes. J Mater. Sci. 26, 8167–8175 (2015)Google Scholar
  37. 37.
    A.V. Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation. J. Phys. Chem. B 104, 1715–1723 (2000)Google Scholar
  38. 38.
    V. Kumar, S. Som, V. Kumar, V. Kumar, O.M. Ntwaeaborwa, E. Coetsee, H.C. Swart, Tunable and white emission from ZnO: Tb3 + nanophosphors for solid state lighting applications. Chem. Eng. J. 255, 541–552 (2014)Google Scholar
  39. 39.
    A. Schejn, L. Balan, D. Piatkowski, S. Mackowski, J. Lulek, R. Schneider, From visible to white-light emission by siloxane-capped ZnO quantum dots upon interaction with thiols. Optical Mater. 34, 1357–1361 (2012)Google Scholar
  40. 40.
    Y.-Y. Peng, T.-E. Hsieh, C.-H. Hsu, White-light emitting ZnO–SiO2 nanocomposite thin films prepared by the target-attached sputtering method. Nanotechnology 17, 174–180 (2006)Google Scholar
  41. 41.
    C.Y. Lee, J.Y. Wang, Y. Chou, C.L. Cheng, C.H. Chao, S.C. Shiu, S.C. Hung, J.J. Chao, M.Y. Liu, W.F. Su, Y.F. Chen, C.F. Lin, White-light electroluminescence from ZnO nanorods/polyfluorene by solution-based growth. Nanotechnology 20, 425202 (2009) (5pp).Google Scholar
  42. 42.
    K. Shijina, G. Varghese, U. Megha,; Surface passivation effect on structure, UV and visible emission of ZnNiPdO nanorods. Mater. Sci. Semiconductor Process. 34, 21–26 (2015)Google Scholar
  43. 43.
    K.S. Babu, A.R. Reddy, K.V. Reddy, Controlling the size and optical properties of ZnO nanoparticles by capping with SiO2. Mater. Res. Bull. 49, 537–543 (2014)Google Scholar
  44. 44.
    B. Choudhary, S. Chawla, K. Jayanthi, K.N. Sood, S. Singh, Synthesis and surface modification of ZnO:Cu nanoparticles by silica and PMMA. Curr. Appl. Phys. 10, 807–812 (2010)Google Scholar
  45. 45.
    M. Navaneethan, J. Archana, M. Arivanandhan, Y. Hayakawa, Functional properties of amine-passivated ZnO nanostructures and dye-sensitized solar cell characteristics. Chem. Eng. J. 213, 70–77 (2012)Google Scholar
  46. 46.
    A. Saini, J. Singh, R. Kaur, N. Singh, N. Kaur, Naphthalimide-based organic nanoparticles for aluminium recognition in acidic soil and aqueous media. New J. Chem., 2014, 38, 4580–4586.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Centre for Nanoscience and Nanotechnology (UIEAST)Panjab UniversityChandigarhIndia
  2. 2.U.I.E.TPanjab UniversityChandigarhIndia
  3. 3.Department of ChemistryPanjab UniversityChandigarhIndia
  4. 4.Biomolecular Electronics and Nanotechnology Division (BEND)Central Scientific Instruments Organization (CSIO)ChandigarhIndia

Personalised recommendations