Effect of H3BO3 on phases, micromorphology and persistent luminescence properties of SrAl2O4: Eu2+, Dy3+ phosphors



Long afterglow material SrAl2O4: Eu2+, Dy3+ were synthesized by solution combustion method, and the effects of the concentration of H3BO3 on phases, micromorphology, photoluminescence properties, long afterglow properties and thermoluminescence glow curves of the phosphors were studied systematically. Phosphor with SrAl2O4 pure phase can be obtained when the concentration of H3BO3 is 2 mol%. The micromorphology of the phosphors changed a lot due to the varied amount of H3BO3, and nanoflower like phosphors was formed when the concentration of H3BO3 is 10 mol%. With the continue increasing of H3BO3, the nanoflower aggregate together to form irregular particles with a larger size and the petal gradually disappear while the luminescence intensity shows a linear increase. The decay curves and the Thermoluminescence glow curves were also measured, and the depth of traps were calculated. The results show that with the increasing concentration of H3BO3, the trap depth increasing gradually. However, the trap depth decrease gradually when the content of H3BO3 beyond 20 mol%, which caused by the diffusion of surplus B3+ in the interstitial sites.


Decay Curve H3BO3 Luminescence Intensity SrAl2O4 Trap Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge financial support from Guangdong province science and technology plan project public welfare fund and ability construction project (2016A010103041), Program of Young Creative Talents in Universities of Guangdong (Natural Science, 2014KQNCX188), Doctoral Program of Lingnan Normal University (ZL1503), China Spark Program (2015GA780058), Natural Science Foundation of Guangdong Province (Nos. 2014A030307008, 2014A030307040, 2016A030313670) and Project for training high-level talents of “Yangfan Plan” in Guangdong Provence.


  1. 1.
    Y.N. Zhu, M.Q. Ge, Mater. Lett. 82 173–176 (2016)CrossRefGoogle Scholar
  2. 2.
    J. Massera, M. Gaussiran, P. Gluchowski, M. Lastusaari, L. Hupa, L. Petit, J. Eur. Ceram. Soc. 35, 3863–3871 (2015)CrossRefGoogle Scholar
  3. 3.
    H.L. Du, W.F. Shan, L.Y. Wang, D. Xu, H. Yin, Y.W. Chen, D.C. Guo, J. Lumin. 176, 272–277 (2016)CrossRefGoogle Scholar
  4. 4.
    W. Xie, J. Quan, H.Y. Wu, L.X. Shao, C.W. Zou, J. Zhang, X.Y. Shi, Y.H. Wang, J. Alloy. Comp. 514, 97–102 (2012)CrossRefGoogle Scholar
  5. 5.
    M. Nazarov, M.G. Brik, D. Spassky, B. Tsukerblat, J. Lumin. 182, 79–86 (2017)CrossRefGoogle Scholar
  6. 6.
    B. Liu, M. Gu, X.L. Liu, S. Huang, C. Ni, J. Alloy. Comp. 509, 4300–4303 (2011)CrossRefGoogle Scholar
  7. 7.
    L.K.S. deHerval, Y. TuncerArslanlar, M. Ayvacikli, F. Iikawa, J.A. Nobrega, P.S. Pizani, Y. GalvãoGobato, N. Can, M. Henini, M.P.F. deGodoy, J. Lumin. 163, 17–20 (2015)CrossRefGoogle Scholar
  8. 8.
    H. Wang, X.P. Liang, K. Liu, Q.Q. Zhou, P. Chen, J. Wang, J.X. Li, Opt. Mater. 53, 94–100 (2016)CrossRefGoogle Scholar
  9. 9.
    A.H. Wako, F.B. Dejene, H.C. Swart, Phys. B 480, 116–124 (2016)CrossRefGoogle Scholar
  10. 10.
    Y.P. Tai, G.J. Zheng, H. Wang, J.T. Bai, J. Solid State Chem. 226, 250–254 (2015)CrossRefGoogle Scholar
  11. 11.
    Y.J. Park, Y.J. Kim, Mater. Sci. Eng. B 146, 84–88 (2008)CrossRefGoogle Scholar
  12. 12.
    S. Thakur, A.K. Gathania, Indian J. Phys. 89, 973–979 (2015)CrossRefGoogle Scholar
  13. 13.
    S. Thakur, A.K. Gathania, J. Fluoresc. 25, 657–661 (2015)CrossRefGoogle Scholar
  14. 14.
    S. Thakur, A. K. Gathania, J. Electron. Mater. 44, 3443–3449 (2015)CrossRefGoogle Scholar
  15. 15.
    Z.X. Yuan, C.K. Chang, D.L. Mao, W.J. Ying, J. Alloy. Comp. 377, 268–271 (2004)CrossRefGoogle Scholar
  16. 16.
    R. Chen, Y.H. Wang, Y.H. Hu, Z.F. Hu, C. Liu, J. Lumin. 128, 1180–1184 (2008)CrossRefGoogle Scholar
  17. 17.
    W. Xie, Y.H. Wang, C.W. Zou, J. Quan, L.X. Shao, J. Alloy. Comp. 619, 244–247 (2015)CrossRefGoogle Scholar
  18. 18.
    P. Dorenbos, J. Electrochem. Soc. 152, H107–H110 (2005)CrossRefGoogle Scholar
  19. 19.
    S. Kumar, A.K. Gathania, A. Vij, R. Kumar, Ceram. Int. 42, 14511–14517 (2016)CrossRefGoogle Scholar
  20. 20.
    T. Katsumata, S. Toyomane, A. Tonegawa, Y. Kanai, U. Kaneyama, J. Cryst. Growth 237239, 361–366 (2002)CrossRefGoogle Scholar
  21. 21.
    M.S. Jahan, D.W. Cooke, W.L. Hults, J.L. Smith, B.L. Bennett, M.A. Maez, J. Lumin. 47, 85–91 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Physical Science and TechnologyLingnan Normal UniversityZhanjiangChina
  2. 2.School of Chemistry and Chemical EngineeringLingnan Normal UniversityZhanjiangChina

Personalised recommendations