Effects of Co and Cu dopants on the structural, optical, and electrical properties of ZnO nanocrystals

  • I. Kara
  • A. Atilgan
  • T. Serin
  • A. Yildiz


Co and Cu doped ZnO nanocrystals were successfully deposited by a sol–gel process. The structure of the samples was characterized by X-ray diffraction. The effects of the dopants on optical and electrical properties of ZnO were investigated by UV–Vis spectroscopy and electrical conductivity measurements, respectively. The band gap slightly decreased with dopants and decreasing grain size due to a deterioration of the crystalline structure. The refractive index of the films was estimated using transmittance spectra. Utilizing this data, porosity values of the films were also evaluated. Co-doped film was found to be more porous than Cu-doped film at the same doping level. Refractive indices of doped films were a little lower than that of undoped ZnO above 460 nm. The electrical conduction was controlled by grain boundaries and the electrical conductivity decreased with dopants due to increasing surface trap density.


Carrier Transport Property Temperature Dependent Electrical Conductivity Cobalt Chloride Hexahydrate Dominate Charge Transport Surface Trap Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the Ankara University BAP under Project Number 14B0443001. We would also like to thank Prof. Dr. Ali Gencer for providing XRD measurements.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    I. Kara, A. Yildiz, G. Yildiz, B. Dogan, N. Serin, T. Serin, J. Mater. Sci.: Mater. Electron. 27, 6179 (2016)Google Scholar
  2. 2.
    S. Benramache, B. Benhaou, Superlatt. Microstruct. 52, 807 (2012)CrossRefGoogle Scholar
  3. 3.
    A.L. Zou, L.Z. Hu, Y. Qiu et al. J. Mater. Sci: Mater. Electron. 26, 4908 (2015)Google Scholar
  4. 4.
    A. Yildiz, F. Iacomi, J. Phys. Soc. Jpn 81, 054602 (2012)CrossRefGoogle Scholar
  5. 5.
    A. Yildiz, B. Yurduguzel, B. Kayhan, G. Calin, M. Dobromi, F. Iacomi, J. Mater. Sci.: Mater. Electron. 23, 425 (2012)Google Scholar
  6. 6.
    M. Norouzi, M. Kolahdouz, P. Ebrahimi, M. Ganjian, R. Soleimanzadeh, K. Narimani, H. Radamson, Thin Solid Films 619, 41 (2016)CrossRefGoogle Scholar
  7. 7.
    D.P. Norton, Y.W. Heo, M.P. Ivill, K. Ip, S.J. Pearton, M.F. Chisholm, T. Steiner, Mater. Today 7, 34 (2004)CrossRefGoogle Scholar
  8. 8.
    T. Serin, A. Yildiz, Ş. Uzun, E. Çam, N. Serin, Phys. Scr. 84, 065703 (2011)CrossRefGoogle Scholar
  9. 9.
    A. Yildiz, T. Serin, E. Öztürk, N. Serin, Thin Solid Films 522, 90 (2012)CrossRefGoogle Scholar
  10. 10.
    H. Belaid, M. Nouiri, Z.B. Ayadi, K. Djessas, L. El Mir, J. Mater. Sci.: Mater. Electron. 26, 8272 (2015)Google Scholar
  11. 11.
    J.B. Lee, H.J. Lee, S.H. Seo, J.S. Park, Thin Solid Films 398–399, 641 (2001)CrossRefGoogle Scholar
  12. 12.
    A. Tiwari, M. Snure, D. Kumar, J.T. Abiade, Appl. Phys. Lett. 92, 062509 (2008)CrossRefGoogle Scholar
  13. 13.
    H.J. Lee, S.Y. Jeong, C.R. Cho, C.H. Park, Appl. Phys. Lett. 81, 4020 (2002)CrossRefGoogle Scholar
  14. 14.
    G. Baccarani, B. Ricco, G. Spandini, J. Appl. Phys. 49, 5565 (1978)CrossRefGoogle Scholar
  15. 15.
    J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975)CrossRefGoogle Scholar
  16. 16.
    J.W. Orton, M.J. Powel, Rep. Prog. Phys. 43, 1263 (1980)CrossRefGoogle Scholar
  17. 17.
    A. Yildiz, S. Uzun, N. Serin, T. Serin, Scripta Mater. 113, 23 (2016)CrossRefGoogle Scholar
  18. 18.
    R. Swanepoel, J. Phys. E: Sci. Instrum. 16, 1214 (1983)CrossRefGoogle Scholar
  19. 19.
    J. Li, S.-T. Wu, J. Appl. Phys. 96, 170 (2004)CrossRefGoogle Scholar
  20. 20.
    S. Roguai, A. Djelloul, C. Nouveau, T. Souier, A.A. Dakhel, M. Bououdin, J. Alloy. Compd 599, 150 (2014)CrossRefGoogle Scholar
  21. 21.
    A. Jagadish, S.J. Pearton, Zinc oxide bulk, thin films and nanostructures: processing, properties, and applications. (Elsevier, Amsterdam, 2011)Google Scholar
  22. 22.
    K. Bouzid, A. Djelloul, N. Bouzid, J. Bougdira, Phys. Status Solidi A 206, 106 (2009)CrossRefGoogle Scholar
  23. 23.
    J.C. Tauc, A. Menth, J. Non-Cryst. Solids 569, 8 (1972)Google Scholar
  24. 24.
    A.S. Ahmed, S.M. Muhamed, M.L. Singla, S. Tabassum, A.H. Naqvi, A. Azam, J. Lumin. 131, 1 (2011)CrossRefGoogle Scholar
  25. 25.
    S.K. Sampath, J.F. Cordaro, J. Am. Ceram. Soc. 81, 649 (1998)CrossRefGoogle Scholar
  26. 26.
    T. Serin, A. Yildiz, N. Serin, Appl. Phys. Express 4, 121101 (2011)CrossRefGoogle Scholar
  27. 27.
    A. Yildiz, N. Serin, M. Kasap, T. Serin, D. Mardare, J. Alloy. Compd. 493, 227 (2010)CrossRefGoogle Scholar
  28. 28.
    T. Serin, A. Yildiz, Ş.H. Şahin, N. Serin, Physica B 406, 3551 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Engineering Physics, Faculty of EngineeringAnkara UniversityAnkaraTurkey
  2. 2.Department of Energy Systems Engineering, Faculty of Engineering and Natural SciencesYıldırım Beyazıt UniversityAnkaraTurkey

Personalised recommendations