Effect of Gd2O3 addition on mechanical, thermal and shielding properties of Al2O3 ceramics

  • Rong Ge
  • Yan Zhang
  • Yujian Liu
  • Jun Fang
  • Weilin Luan
  • Guozhang Wu


Gd2O3/Al2O3 ceramic composites with different weight percent of Gd2O3 were prepared by adopting a pressureless sintering approach. The effect of Gd2O3 addition on the phase composition, sintering property, microstructure, bending strength, thermal conductivity and shielding property of the composites was investigated. The results show that the properties of ceramic can be improved greatly by introducing a small amount of Gd2O3, owing to the promotion of reaction between MgO, SiO2 and Al2O3 to produce spinel and forsterite. Compared with ordinary Al2O3 ceramic, the bending strength and thermal conductivity coefficient of Gd2O3/Al2O3 composite with 5 wt% Gd2O3 have increased by 38.03 MPa and 8.95 W/(m K), respectively. When the amount of Gd2O3 surpasses 15 wt%, however, the performances of the composite would become worse for excessive new phases formed in the composite hindering its densification. In addition, screening ratio of the composites for Co-60 gamma rays radiation increases with the addition of Gd2O3. And the Gd2O3/Al2O3 composites also exhibit good mechanical stability when exposed to continuous gamma rays irradiation.


Sinter Temperature Forsterite MgAl2O4 Ceramic Composite Gd2O3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was supported by the National Key Basic Research Program of China (973 Program) (No. 2013CB035505), Shanghai Leading Academic Discipline Project (B502).


  1. 1.
    T. Koyama, A. Nishiyama, K. Niihara, J. Mater. Sci. 28, 5953 (1993)CrossRefGoogle Scholar
  2. 2.
    H. Farzanehfard, J. He, A. Elshabini-Riad, IEEE Trans. Instrum. Meas. 40, 490 (1991)CrossRefGoogle Scholar
  3. 3.
    P. Hagler, P. Henson, R.W. Johnson, IEEE Trans. Ind. Electron. 58, 2673 (2011)CrossRefGoogle Scholar
  4. 4.
    T. Thelemann, H. Thust, G. Bischoff, T. Kirchner. Intl. J. Microcircuits Electron. Pack. 23, 209 (2000)Google Scholar
  5. 5.
    D. Suryanarayana, J. Electron. Pack. 111, 192 (1989)CrossRefGoogle Scholar
  6. 6.
    C. Zweben, Jom, 50, 47 (1998)CrossRefGoogle Scholar
  7. 7.
    S. Takeuchi, J. Ceram. Soc. Jpn. 100, 608 (1992)CrossRefGoogle Scholar
  8. 8.
    D.R. Frear, S. Thomas, MRS Bull. 28, 68 (2003)CrossRefGoogle Scholar
  9. 9.
    L.A. Xue, I.W. Chen, J. Am. Ceram. Soc. 74, 8 (1991)Google Scholar
  10. 10.
    J. Fang, A.M. Thompson, M.P. Harmer, H.M. Chan, J. Am. Ceram. Soc. 80, 2005 (1997)CrossRefGoogle Scholar
  11. 11.
    X. Zhang, C. Liu, M. Li, J. Zhang, J. Rare Earth 26, 367 (2008)CrossRefGoogle Scholar
  12. 12.
    R.T. Iohnson Jr., F.V. Thome, M.C Craft, IEEE Trans. Nucl. Sci. 30, 4358 (1983)CrossRefGoogle Scholar
  13. 13.
    A.B. Kheradmand, Z. Lalegani, J. Mater. Sci. 26, 7530 (2015)Google Scholar
  14. 14.
    Z. Nedjem, T. Seghier, A. Hadjadj, J. Mater. Sci. 27, 3202 (2016)Google Scholar
  15. 15.
    B.K. Jang, S. Kim, Y.S. Oh, H.T. Kim, Y. Sakka, H. Murakami, Scripta Mater. 69, 165 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Kaewjang, U. Maghanemi, S. Kothan, H. J. Kim, P. Limkitjaroenporn, J. Kaewkhao, Nucl. Eng. Des. 280, 21 (2014)CrossRefGoogle Scholar
  17. 17.
    W.C. Johnson, R.L. Coble, J. Am. Ceram. Soc. 61, 110 (1978)CrossRefGoogle Scholar
  18. 18.
    Y.Q. Wu, Y.F. Zhang, X.X. Huang, B.S. Li, J.K. Guo, J. Mater. Sci. 36, 4195 (2001)CrossRefGoogle Scholar
  19. 19.
    W.D. Kingery, in Introduction to Ceramics, 2nd edn. (Springer, Berlin, 1975), pp. 808–810Google Scholar
  20. 20.
    K. Watari, H.J. Hwang, M. Toriyama, S. Kanzaki, J. Mater. Res. 14, 1409 (1999)CrossRefGoogle Scholar
  21. 21.
    L. Chang, Y. Zhang, Y. Liu, J. Fang, W. Luan, X. Yang, W. Zhang, Nucl. Instrum. Methods B. 356, 88 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Rong Ge
    • 1
  • Yan Zhang
    • 1
  • Yujian Liu
    • 1
  • Jun Fang
    • 1
  • Weilin Luan
    • 2
  • Guozhang Wu
    • 3
  1. 1.Key Laboratory of Specially Functional Polymeric Materials and Related Technology, Ministry of Education, School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.Key Laboratory of Pressure and Safety (MOE), School of Mechanical and Power EngineeringEast China University of Science and TechnologyShanghaiChina
  3. 3.Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations