The relationship between deep-level defects and high resistivity characteristic in CdZnTe crystals



The internal defects of CdZnTe crystals grown by the modified vertical Bridgman (MVB) method act as trapping centers or recombination centers in the band gap, which have effects on its resistivity. The relationship between deep-level defects and high resistivity characteristic in Cd0.9Zn0.1Te:In single crystal was studied. The deep-level defects were identified by thermally stimulated current (TSC) spectroscopy and thermoelectric effect spectroscopy (TEES) in the temperature range of 18–315 K. The trap-related parameters, e.g., activation energy, capture cross section, trap density were characterized by the simultaneous multiple peak analysis (SIMPA) method and Arrhenius fitting. The deep donor level (\({{E}_{\text{DD}}}\)) dominating dark current was about 0.664 eV near the middle gap by fitting the plots of the natural logarithm of dark current intensity ln(I DC) versus 1/(kT). The doubly ionized Te antisite (\(\text{Te}_{\text{Cd}}^{\text{2+}}\)) below the conduction band acting as a deep donor level was mainly the origin of \({{E}_{\text{DD}}}\) level. The energy value of Fermi-level was about 0.671 eV characterized by current–voltage (I–V) measurements of temperature dependence in the temperature range from 275 K to 315 K. The resistivity was about 8.17 × 109 Ω·cm measured by I–V measurement at room temperature. The high resistivity performance of Cd0.9Zn0.1Te:In crystal is mainly due to the Fermi-level pinned near the middle gap by the \({{E}_{\text{DD}}}\) level.


Capture Cross Section Cadmium Zinc Telluride Thermally Stimulate Current Versus Bias Voltage Thermal Activation Energy 



This work was supported by the National Natural Science Foundation of China (No. 51502234).


  1. 1.
    X. Li, J.H. Chu, L.X. Li, N. Dai, J.L. Sun, F.J. Zhang, Semicond. Technol. 133(11), 941–946 (2008)Google Scholar
  2. 2.
    G.Q. Zha, T. Wang, Y.D. Xu, W.Q. Jie, Physics 42(12), 862–869 (2013)Google Scholar
  3. 3.
    Q.S. Zhang, C.Z. Zhang, Y.Y. Lu, Sensors 13(2), 2447–2456 (2013)CrossRefGoogle Scholar
  4. 4.
    T. Wang, W.Q. Jie, J.J. Zhang, J. Cryst. Growth 304(2), 313–319 (2007)CrossRefGoogle Scholar
  5. 5.
    V. Carcelen, J. Franc, Z. Li, R.B. James, J. Electron Mater. 41(3), 488–493 (2012)CrossRefGoogle Scholar
  6. 6.
    Z. Li, G. Gu, R.B. James, J. Electron Mater 40(3), 274–279 (2011)CrossRefGoogle Scholar
  7. 7.
    R.H. Bube, Photoconductivity of Solids (Springer, New York, 1960), p. 292Google Scholar
  8. 8.
    M. Pavlovic, U.V. Desnica, J. Appl. Phys. 84(4), 2018–2022 (1998)CrossRefGoogle Scholar
  9. 9.
    N. Krsmanovic, K.G. Lynn, M.H. Weber, R. Tjossem, T. Gessmann, C. Szeles, E.E. Eissler, J.P. Flint, Phys. Rev. B 62(2), 162–179 (2000)Google Scholar
  10. 10.
    R. Gul, A. Bolotnikov, H.K. Kim, R. Rodriguez, K. Keeter, Z. Li, G. Gu, R.B. James, J. Electron Mater. 40(1), 274–279 (2011)CrossRefGoogle Scholar
  11. 11.
    A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, J. Piqueras, J. Appl. Phys 83, 2121–2126 (1998)CrossRefGoogle Scholar
  12. 12.
    A. Cavallini, A.K. Tagantsev, S. Oberg, P.R. Briddon, N. Setter, Phys. Rev. B 81(1), 206–215 (2010)Google Scholar
  13. 13.
    P. Emanuelsson, P. Omling, B. Meyer, M. Wienecke, M. Schenk, Phys. Rev. B 47(5), 578–580 (1993)Google Scholar
  14. 14.
    D. Kabiraj, S. Ghosh, Appl. Phys. Lett. 84(10), 1713–1715 (2004)CrossRefGoogle Scholar
  15. 15.
    M. Du, H. Takenaka, D.J. Singh, Phys. Rev. B 77(8), 116–122 (2008)Google Scholar
  16. 16.
    A. Bolotnikov, G. Camarda, S. Culy, J. Cryst. Growth 379, 46–56 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Materials and Chemical EngineeringXi’an Technological UniversityXi’anChina

Personalised recommendations