Synthesis of plasmonic enhance sphere-like Ag/AgI/Bi5O7I photocatalysts with improved visible-light responsive activity under LED light irradiation



Coupling surface plasmon with semiconductor has been demonstrated to be an efficient strategy for improving the photocatalytic performance of the photocatalyst. The sphere-like Ag/AgI/Bi5O7I composites were synthesized by a hydrothermal-decomposition process, followed by an in-situ ion exchange reaction. Under LED lamp irradiation (400 < λ < 800 nm), the as-prepared Ag/AgI/Bi5O7I displayed a great enhancement in photocatalytic activities for the degradation of organic dyes (Rhodamine B and methyl orange), as compared with the pure orthorhombic phase Bi5O7I. The scavenger test results indicated that the photo-generated h+ would play an important role in the degradation of organic pollutants. Moreover, the Ag/AgI/Bi5O7I nanocomposite generates high photoactivity in the cycling photocatalytic test. According to the experimental results, the possible photocatalytic degradation mechanism of Ag/AgI/Bi5O7I was also proposed. From our perspective, this advantage is mainly ascribed to two aspects: (i) the surface plasmon resonance effect of Ag nanoparticles; (ii) the highly efficient separation of electrons and holes through the closely contacted interfaces in the Ag/AgI/Bi5O7I system.


Photocatalytic Activity Methyl Orange Visible Light Irradiation Composite Photocatalysts Excellent Photocatalytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 51272148 and 51302162), the Fundamental Research Funds for the Central Universities (Grant Nos. 2016CSZ011, GK201603013 and GK201603018), and the research fund for Guangdong Provincial Key Laboratory of Mineral Physics and Materials (Grant No. GLMPM-017).


  1. 1.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)CrossRefGoogle Scholar
  2. 2.
    Y.B. Liu, G.Q. Zhu, J.Z. Gao, M. Hojamberdiev, H.B. Lu, R.L. Zhu, X.M. Wei, P. Liu, J. Alloy. Compd 688, 487–496 (2016)CrossRefGoogle Scholar
  3. 3.
    S.J. Xia, F.X. Liu, Z.M. Ni, W. Shi, J.L. Xue, P.P. Qian, Appl. Catal. B 144, 570–579 (2014)CrossRefGoogle Scholar
  4. 4.
    Y.B. Shi, Z.X. Yang, Y. Liu, J. Yu, F.P. Wang, J.H. Tong, B.T. Su, Q.Z. Wang, RSC Adv. 6, 39774–39783 (2016)CrossRefGoogle Scholar
  5. 5.
    T. Wang, C.J. Li, J.Y. Ji, Y.J. Wei, P. Zhang, S.P. Wang, X.B. Fan, J. Gong, ACS Sustain. Chem. Eng. 2, 2253–2258 (2014)CrossRefGoogle Scholar
  6. 6.
    L.Q. Ye, Y.R. Su, X.L. Jin, H.Q. Xie, C. Zhang, Environ. Sci. 1, 90–112 (2014)Google Scholar
  7. 7.
    A. Dash, S. Sarkar, V.N.K.B. Adusumalli, V. Mahalingam, Langmuir 30, 1401–1409 (2014)CrossRefGoogle Scholar
  8. 8.
    J. Li, Y. Yu, L.Z. Zhang, Nanoscale 6, 8473–8488 (2014)CrossRefGoogle Scholar
  9. 9.
    L. Chen, R. Huang, M. Xiong, Q. Yuan, J. He, J. Jia, M.Y. Yao, S.L. Luo, C.T. Au, S.F. Yin, Inorg. Chem. 52, 11118–11125 (2013)CrossRefGoogle Scholar
  10. 10.
    C. Liu, X.J. Wang, Dalton Trans. 45, 7720–7727 (2016)CrossRefGoogle Scholar
  11. 11.
    Q.C. Liu, D.K. Ma, Y.Y. Hu, Y.W. Zeng, S.M. Huang, ACS Appl. Mater. Interfaces 5, 11927–11934 (2013)CrossRefGoogle Scholar
  12. 12.
    Y. Peng, P.P. Yu, H.Y. Zhou, A.W. Xu, New J. Chem., 39, 8321–8328 (2015)CrossRefGoogle Scholar
  13. 13.
    X. Xiao, C. Liu, R.P. Hu, X.X. Zuo, J.M. Nan, L.S. Li, L.S. Wang, J. Mater. Chem. 22, 22840–22843 (2012)CrossRefGoogle Scholar
  14. 14.
    C.L. Yu, C.F. Fan, J.C. Yu, W.Q. Zhou, K. Yang, Mater. Res. Bull. 46, 140–146 (2011)CrossRefGoogle Scholar
  15. 15.
    S.M. Sun, W.Z. Wang, L. Zhang, L. Zhou, W.Z. Yin, M. Shang, Environ. Sci. Technol. 43, 2005–2010 (2009)CrossRefGoogle Scholar
  16. 16.
    Y.R. Su, H. Wang, L.Q. Ye, X.L. Jin, H.Q. Xie, C.Z. He, K.Y. Bao, RSC Adv. 4, 65056–65064 (2014).CrossRefGoogle Scholar
  17. 17.
    J. Yang, L.J. Xu, C.L. Liu, T.P. Xie, Appl. Surf. Sci. 319, 265–271 (2014)CrossRefGoogle Scholar
  18. 18.
    J. Cao, X. Li, H.L. Lin, B.Y. Xu, B.D. Luo, S.F. Chen, Mater. Lett. 76, 181–183 (2012)CrossRefGoogle Scholar
  19. 19.
    J.L. Han, G.Q. Zhu, M. Hojamberdiev, J.H. Peng, P. Liu, Mater. Lett. 169, 122–125 (2016)CrossRefGoogle Scholar
  20. 20.
    M.S. Su, H.L. Liu, J.J. Ma, J. Mater. Sci. Mater. Electron. 27, 10707–10711 (2016).CrossRefGoogle Scholar
  21. 21.
    Y.J. Zang, R. Farnood, Appl. Catal. B 79, 334–340 (2008)CrossRefGoogle Scholar
  22. 22.
    H.J. Cheng, J.G. Hou, H.M. Zhu, X.M. Guo, RSC Adv. 4, 41622–41630 (2014).CrossRefGoogle Scholar
  23. 23.
    X.F. Wang, S.F. Li, Y.Q. Ma, H.G. Yu, J.G. Yu, J. Phys. Chem. C 115, 14648–14655 (2011)CrossRefGoogle Scholar
  24. 24.
    J.G. Hou, Z. Wang, C. Yang, W.L. Zhou, S.Q. Jiao, H.M. Zhu, J. Phys. Chem. C 117, 5132–5141 (2013)CrossRefGoogle Scholar
  25. 25.
    J. Zhang, C.G. Niu, J. Ke, L.F. Zhou, G.M. Zeng, Catal. Commun. 59, 30–34 (2015)CrossRefGoogle Scholar
  26. 26.
    L.Q. Ye, J.Y. Liu, C.Q. Gong, L.H. Tian, T.Y. Peng, L. Zan, ACS. Catal., 2, 1677–1683 (2012)CrossRefGoogle Scholar
  27. 27.
    Y.X. Yang, W. Guo, Y.N. Guo, Y.H. Zhao, X. Yuan, Y.H. Guo, J. Hazard. Mater. 271, 150–159 (2014)CrossRefGoogle Scholar
  28. 28.
    J. Chen, W.G. Mei, Q.J. Huang, N.N. Chen, C.L. Lu, H.J. Zhu, J. Chen, W.H. Hou, J. Alloy. Compd. 688, 225–234 (2016)CrossRefGoogle Scholar
  29. 29.
    H. Xu, J.X. Zhu, Y.X. Song, T.T. Zhu, W.K. Zhao, Y.H. Song, Z.L. Da, C.B. Liu, H.M. Li, J. Alloy. Compd. 622, 347–357 (2015)CrossRefGoogle Scholar
  30. 30.
    J.L. Han, G.Q. Zhu, M. Hojamberdiev, J.H. Peng, X. Zhang, Y. Liu, B. Ge, P. Liu, New J. Chem. 39, 1874–1882 (2015)CrossRefGoogle Scholar
  31. 31.
    G.Q. Zhu, W.X. Que, J. Zhang, J. Alloy. Compd. 509, 9479–9486 (2011)CrossRefGoogle Scholar
  32. 32.
    S.J. Liang, S.Y. Zhu, Y. Chen, W.M. Wu, X.C. Wang, J. Mater. Chem. 22, 2670–2678 (2012)CrossRefGoogle Scholar
  33. 33.
    M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, J. Power Sources 181, 46–55 (2008).CrossRefGoogle Scholar
  34. 34.
    C.H. An, J.Z. Wang, W. Jiang, M.Y. Zhang, X.J. Ming, S.T. Wang, Q.H. Zhang, Nanoscale 4, 5646–5650 (2012)CrossRefGoogle Scholar
  35. 35.
    C. Dong, K.L. Wu, X.W. Wei, J. Wang, L. Liu, B.B. Jiang, Appl. Catal. A 488, 11–18 (2014)CrossRefGoogle Scholar
  36. 36.
    R. Liu, P. Wang, X.F. Wang, J.G. Yu, H.G. Yu, J. Phys. Chem. C 116, 17721–17728 (2012)CrossRefGoogle Scholar
  37. 37.
    J.G. Hou, C. Yang, Z. Wang, Q.H. Ji, Y.T. Li, G.C. Huang, S.Q. Jiao, H.M. Zhu, Appl. Catal. B 142, 579–589 (2013)CrossRefGoogle Scholar
  38. 38.
    Y.F. Wang, L. Yan, X.M. He, J. Li, D.J. Wang, J. Mater. Sci. Mater. Electron. 27, 5190–5196 (2016).CrossRefGoogle Scholar
  39. 39.
    J. Cao, J.Q. Pan, M.Z. You, W.J. Zhao, Y.Y. Zheng, B.Y. Chen, C.R. Li, J. Mater. Sci. Mater. Electron. 27, 4307–4313 (2016).CrossRefGoogle Scholar
  40. 40.
    M. Yan, Y.L. Wu, Y. Yan, X. Yan, F.F. Zhu, Y.Q. Hua, W.D. Shi, ACS Sustain. Chem. Eng. 4, 757–766 (2016)CrossRefGoogle Scholar
  41. 41.
    D.L. Chen, T. Li, Q.Q. Chen, J.B. Gao, B.B. Fan, J. Li, X.J. Li, R. Zhang, J. Sun, L. Gao, Nanoscale 4, 5431–5439 (2012)CrossRefGoogle Scholar
  42. 42.
    Y.N. Zhang, H.Q. Fan, M.M. Li, H.L. Tian, Dalton Trans. 42, 13172–13178 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yafei Zhang
    • 1
  • Gangqiang Zhu
    • 1
    • 2
  • Jianzhi Gao
    • 1
  • Runliang Zhu
    • 2
  • Mirabbos Hojamberdiev
    • 1
  • Xiumei Wei
    • 1
  • Peng Liu
    • 1
  1. 1.School of Physics and Information TechnologyShaanxi Normal UniversityXi’anChina
  2. 2.Guangdong Provincial Key Laboratory of Mineral Physics and Material Research & Development, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina

Personalised recommendations