Optical and electrical properties of n-ZnAgAuO/p-Si heterojunction diodes

  • R. Krithikadevi
  • M. Arulmozhi
  • C. Siva
  • B. Balraj
  • G. Mohan Kumar


Chemical synthesis of nanostructured materials has nowadays attracted significant interest for a number of electronic and optoelectronic applications. In this regard, the influence of co-doping on the electrical characteristics of zinc oxide (ZnO) was systematically investigated using noble metals such as silver (Ag) and gold (Au). The doped nanostructures were actually synthesized by a simple wet chemical route and studied using X-ray diffraction (XRD) and electron microscopic tools to validate the successful incorporation of metal ions and their other structural and morphological characteristics. The optical band gaps of the processed materials were further estimated using the Tauc’s plot. p-n junctions were then fabricated using a colloidal dispersion of the obtained samples via spray pyrolysis on p-Si. The current–voltage (I–V) characteristics of the fabricated diodes revealed an improved electrical conductivity in the co-doped systems. The findings were justified to the newly generated energy levels in ZnO, which might have acted as trap centers and resulted with the downward shift in their Fermi level.


Spray Pyrolysis Valence Band Maximum Heterojunction Diode Deep Level State Auric Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors express their gratitude for the financial support extended by the Technical Education Quality Improvement program (TEQIP II), BIT Campus, Anna University, Tiruchirappalli, India.


  1. 1.
    Y. Sun, X. Yan, X. Zheng, Y. Liu, Y. Zhao, Y. Shen, Q. Liao, Y. Zhang. ACS Appl. Mater. Interfaces 7, 7382–7388 (2015)CrossRefGoogle Scholar
  2. 2.
    A. Wei, L. Pan, W. Huang, Mat. Sci. Eng. B, 176 1409–1421 (2011)CrossRefGoogle Scholar
  3. 3.
    W. Tian, C. Zhang, T. Zhai, L. Song-Lin, X. Wang, J. Liu, X. Jie, D. Liu, M. Liao, Y. Koide, D. Golberg, Y. Bando. Adv. Mater. 26, 3088–3093 (2014)CrossRefGoogle Scholar
  4. 4.
    U. Ozgur, I. Alivov Ya, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  5. 5.
    A.B.F. Martinson, M.S. Goes, F. Fabregat-Santiago, J. Bisquert, M.J. Pellin, J.T. Hupp, J. Phys. Chem. A 113, 4015–4021 (2009)CrossRefGoogle Scholar
  6. 6.
    M. Zhang, X. Gao, A. Barra, P. Chang, L. Huang, R. Hellwarth, J.G. Lu, Mater. Lett. 140, 59–63 (2015)CrossRefGoogle Scholar
  7. 7.
    W. Bala, Y. Zorenko, V. Savchyn, T. Voznyak, K. Paprocki, P. Popielarski, M. Szybowicz, Solid State Phenom., 200 14–21 (2013)CrossRefGoogle Scholar
  8. 8.
    Z.L. Wang, J. Phys. 16, R829–R858 (2004)Google Scholar
  9. 9.
    S.C. Lyu, Y. Zhang, C.J. Lee, H. Ruh, H.J. Lee. Chem. Mater. 15, 3294–3299 (2003)CrossRefGoogle Scholar
  10. 10.
    E. Senthil Kumar, J. Chatterjee, N. Rama, N. DasGupta, M.S.R. Rao, ACS Appl. Mater. Interfaces 3 1974–1979 (2011)CrossRefGoogle Scholar
  11. 11.
    S.D. Kirby, R.B. van Dover, Thin Solid Films 517, 1958–1960 (2009)CrossRefGoogle Scholar
  12. 12.
    S. Zhang, H. Fengchun, H. Jingfu, W. Cheng, Q. Liu, Y. Jiang, Z. Pan, W. Yan, Z. Sun, S. Wei, J. Phys. Chem. C 117, 24913–24919 (2013)CrossRefGoogle Scholar
  13. 13.
    L. Huifeng, Y. Huang, Q. Zhang, Y. Qiao, G. Yousong, J. Liu, Y. Zhang, Nanoscale 3, 654–660 (2011)CrossRefGoogle Scholar
  14. 14.
    T. Ohshima, T. Ikegami, K. Ebihara, R.K. Thareja, Electr. Eng. Jpn. 144 1–7 (2003)CrossRefGoogle Scholar
  15. 15.
    T. Basu, M. Kumar, T. Som, Mater. Lett. 135, 188–190 (2014)CrossRefGoogle Scholar
  16. 16.
    B. Kumari, S. Sharma, V.R. Satsangi, S. Dass, R. Shrivastav, J. Appl. Electrochem. 45, 299–312 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Senthilraja, B. Subash, B. Krishnakumar, D. Rajamanickam, M. Swaminathan, M. Shanthi, Mater. Sci. Semicond. Process. 22 83–91 (2014)CrossRefGoogle Scholar
  18. 18.
    C. Siva, G. Gnanasekaran, G. Mohan Kumar, B. Pari, K. Balasubramanian, M. Sivakumar, J. Colloid Interface Sci. 452, 169–173 (2015)CrossRefGoogle Scholar
  19. 19.
    C. Siva, S. Solomon Jones, P. Thanga Gomathi, G.M. Kumar, J. Mater. Sci. Mater. Electron. 27 10754–10758 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Guo, X. Cao, X. Lan, C. Zhao, X. Xue, Y. Song, J. Phys. Chem. C 112, 8832 (2008)CrossRefGoogle Scholar
  21. 21.
    G. Yarzhemsky, E.N. Muravev, M.A. Kazaryan, Y.A. Dyakov, Electronic structure of gold nanoparticles. J. Inorg. Mater. 48 1075–1077 (2012)CrossRefGoogle Scholar
  22. 22.
    W.K. Liu, G.M. Salley, D.R. Gamelin, J. Phys. Chem. B 109, 14486 (2005)CrossRefGoogle Scholar
  23. 23.
    S. Mridha, D. Basak, Appl. Phys. Lett. 92, 142111 (2008)CrossRefGoogle Scholar
  24. 24.
    Q. Junjie, H. Xiaofeng, Z. Wang, L. Xin, W. Liu, Y. Zhang, Nanoscale 6, 6025–6029 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • R. Krithikadevi
    • 1
  • M. Arulmozhi
    • 1
  • C. Siva
    • 2
  • B. Balraj
    • 1
  • G. Mohan Kumar
    • 3
  1. 1.Department of Petrochemical TechnologyAnna UniversityTiruchirappalliIndia
  2. 2.Department of Physics and NanotechnologySRM UniversityKattankulathurIndia
  3. 3.Nano-Information Technology Academy (NITA)Dongguk UniversitySeoulRepublic of Korea

Personalised recommendations