Advertisement

Facile synthesis of Co–WO3/functionalized carbon nanotube nanocomposites for supercapacitor applications

  • R. Dhilip Kumar
  • Y. Andou
  • S. Karuppuchamy
Article

Abstract

Co–WO3/functionalized carbon nanotube (f-CNT) nanocomposites have been prepared by solution growth technique. The physico-chemical characterization of the prepared nanocomposites was carried out by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy techniques. The XRD analysis revealed the formation of orthorhombic phase of the prepared nanopowder. The SEM images showed the porous structured morphologies. The electrochemical behavior of the undoped and doped/f-CNT modified electrodes was investigated using electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic charge–discharge techniques. The specific capacitance of 60.14 F/g was achieved for the Co–WO3/f-CNT nanocomposites.

Keywords

Specific Capacitance Modify Electrode Supercapacitor Application Tungstic Acid Microwave Irradiation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Winter, R.J. Brodd, Chem. Rev. 104, 4245 (2004)CrossRefGoogle Scholar
  2. 2.
    A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources 157, 11 (2006)CrossRefGoogle Scholar
  3. 3.
    Z. Fan, J.H. Chen, K.Z. Cui, F. Sun, Y. Xu, Y.F. Kuang, Electrochim. Acta 52, 2959 (2007)CrossRefGoogle Scholar
  4. 4.
    P. Sivaraman, S.K. Rath, V.R. Hande, A.P. Thakur, M. Patri, A.B. Samui, Synth. Met. 156, 1057 (2006)CrossRefGoogle Scholar
  5. 5.
    H. Matsui, S. Yamamoto, Y. Izawa, S. Karuppuchamy, M. Yoshihara, Mater. Chem. Phys. 103, 127 (2007)CrossRefGoogle Scholar
  6. 6.
    T. Kawahara, T. Kuroda, H. Matsui, M. Mishima, S. Karuppuchamy, Y. Seguchi, M. Yoshihara, J. Mater. Sci. 42, 3708 (2007)CrossRefGoogle Scholar
  7. 7.
    T. Kawahara, H. Miyazaki, S. Karuppuchamy, H Matsui, M. Ito, M. Yoshihara, Vacuum 81, 680 (2007)CrossRefGoogle Scholar
  8. 8.
    H. Matsui, S. Karuppuchamy, J. Yamaguchi M. Yoshihara, J. Photochem. Photobiol. A 189, 280 (2007)CrossRefGoogle Scholar
  9. 9.
    H. Miyazaki, H. Matsui, T. Nagano, S. Karuppuchamy, S. Ito, M. Yoshihara, Appl. Surf. Sci. 254, 7365 (2008)CrossRefGoogle Scholar
  10. 10.
    H. Matsui, K. Kira, S. Karuppuchamy, M. Yoshihara, Curr. Appl. Phys. 9, 592 (2009)CrossRefGoogle Scholar
  11. 11.
    S. Karuppuchamy, M. Iwasaki, H. Minoura, Vacuum 81, 708 (2007)CrossRefGoogle Scholar
  12. 12.
    S. Karuppuchamy, S. Ito, Vacuum, 82, 547 (2008)CrossRefGoogle Scholar
  13. 13.
    S. Karuppuchamy, N. Suzuki, S. Ito, T. Endo, Curr. Appl. Phys. 9, 243 (2009)CrossRefGoogle Scholar
  14. 14.
    S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, H. Minoura, Solid State Ion. 151, 19 (2002)CrossRefGoogle Scholar
  15. 15.
    R. Dhilip Kumar, S. Karuppuchamy, J. Mater. Sci. 26, 6439 (2015)Google Scholar
  16. 16.
    H. Matsui, T. Okajima, S. Karuppuchamy, M. Yoshihara, J. Alloys Compd. 468, L27 (2009)CrossRefGoogle Scholar
  17. 17.
    H. Matsui, S. Nagano, S. Karuppuchamy, M. Yoshihara, Curr. Appl. Phys. 9, 561 (2009)CrossRefGoogle Scholar
  18. 18.
    H. Miyazaki, H. Matsui, T. Kuwamoto, S. Ito, S. Karuppuchamy, M. Yoshihara, Microporous Mesoporous Mater. 118, 518 (2009)CrossRefGoogle Scholar
  19. 19.
    H. Matsui, Y. Saitou, S. Karuppuchamy, M.A. Hassan, M. Yoshihara, J. Alloys Compd. 538, 177 (2012)CrossRefGoogle Scholar
  20. 20.
    H. Miyazaki, H. Matsui, Y. Kita, S. Karuppuchamy, S. Ito, M. Yoshihara, Curr. Appl. Phys. 9, 155 (2009)CrossRefGoogle Scholar
  21. 21.
    R. Dhilip Kumar, S. Karuppuchamy, J. Mater. Sci. 26, 3256 (2015)Google Scholar
  22. 22.
    K. Santhi, P. Manikandan, C. Rani, S. Karuppuchamy, Appl. Nanosci. 5, 373 (2015)CrossRefGoogle Scholar
  23. 23.
    M. Thamima, S. Karuppuchamy, Adv. Sci. Eng. Med. 7, 18 (2015)CrossRefGoogle Scholar
  24. 24.
    H. Matsui, K. Santhi, S. Sugiyama, M. Yoshihara, S. Karuppuchamy, Ceram. Int. 40, 2169 (2014)CrossRefGoogle Scholar
  25. 25.
    R. Dhilip Kumar, Y. Andou, S. Karuppuchamy, J. Alloys Compd. 54, 349 (2016)CrossRefGoogle Scholar
  26. 26.
    R. Dhilip Kumar, Y. Andou, M. Sathish, S. Karuppuchamy, J. Mater. Sci. 27, 2926 (2016)Google Scholar
  27. 27.
    S.K. Meher, G.R. Rao, J. Phys. Chem. C 115, 15646 (2011)CrossRefGoogle Scholar
  28. 28.
    R. Dhilip Kumar, Y. Andou, S. Karuppuchamy, J. Phys. Chem. Solids 92, 94 (2016)CrossRefGoogle Scholar
  29. 29.
    R. Dhilip Kumar, M. Sathish, S. Karuppuchamy, J. Alloys Compd. 674, 384 (2016)CrossRefGoogle Scholar
  30. 30.
    C.W. Kung, H.W. Chen, C.Y. Lin, R. Vittal, K.C. Ho, J. Power Sources 214, 91 (2012)CrossRefGoogle Scholar
  31. 31.
    R. Dhilip Kumar, S. Karuppuchamy, Ceram. Int. 40, 12397 (2014)CrossRefGoogle Scholar
  32. 32.
    H.R. Ghenaatian, M.F. Mousavi, M.S. Rahmanifar, Electrochim. Acta 78, 212 (2012)CrossRefGoogle Scholar
  33. 33.
    A. Sumboja, X. Wang, J. Yan, P.S. Lee, Electrochim. Acta 65, 190 (2012)CrossRefGoogle Scholar
  34. 34.
    K.H. Chang, C.C. Hu, C.Y. Chou, Chem. Mater. 19, 2112 (2007)CrossRefGoogle Scholar
  35. 35.
    J.K. Lee, H.M. Pathan, K.D. Jung, O.S. Joo, J. Power Sources 159, 1527 (2006)CrossRefGoogle Scholar
  36. 36.
    C. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennent, Appl. Phys. Lett. 70, 1480 (1997)CrossRefGoogle Scholar
  37. 37.
    S. Yan, H. Wang, P. Qu, Y. Zhang, Z. Xiao, Synth. Met. 159, 158 (2009)CrossRefGoogle Scholar
  38. 38.
    L. Tian, L. Ye, J. Liu, L. Zan, Catal. Commun. 17, 99 (2012)CrossRefGoogle Scholar
  39. 39.
    P. Sun, Z. Deng, P. Yang, X. Yu, Y. Chen, Z. Liang, H. Meng, W. Xie, S. Tan, W. Mai, J. Mater. Chem. A (2015). doi: 10.1039/c5ta02316e Google Scholar
  40. 40.
    S. Balaji, Y. Djoued, A.S. Albert, R.Z. Ferguson, R. Brüning, Chem. Mater. 21, 1381 (2009)CrossRefGoogle Scholar
  41. 41.
    A. Sonia, Y. Djaoued, B. Subramanian, R. Jacques, M. Eric, B. Ralf, B. Achour, Mater. Chem. Phys. 136, 80 (2012)CrossRefGoogle Scholar
  42. 42.
    R. Huirache-Acuña, F. Paraguay-Delgado, M.A. Albiter, J. Lara-Romero, R. Martínez-Sánchez, Mater. Charact. 60, 932 (2009)CrossRefGoogle Scholar
  43. 43.
    S. Rajagopal, D. Nataraj, D. Mangalaraj, Y. Djaoued, J. Robichaud, O.Y. Khyzhun, Nanoscale Res. Lett. 4, 1335 (2009)CrossRefGoogle Scholar
  44. 44.
    C. Portet, P.L. Taberna, P. Simon, C. Laberty-Robert, Electrochim. Acta 49, 905 (2004)CrossRefGoogle Scholar
  45. 45.
    L. Gao, X. Wang, Z. Xie, W. Song, L. Wang, X. Wu, F. Qu, D. Chena, G. Shen, J. Mater. Chem. A 1, 7167 (2013)CrossRefGoogle Scholar
  46. 46.
    S. Saranya, S.T. Senthilkumar, K. Vijaya Sankar, R. Kalai Selvan, J. Electroceram. 28, 220 (2012)CrossRefGoogle Scholar
  47. 47.
    B. Senthilkumar, R. Kalai Selvan, D. Meyrick, M. Minakshi, Int. J. Electrochem. Sci. 10, 185 (2015)Google Scholar
  48. 48.
    A.L. Mohana Reddy, M.M. Shaijumon, S.R. Gowda, P.M. Ajayan, J. Phys. Chem. C 114, 658 (2010)CrossRefGoogle Scholar
  49. 49.
    G. Lota, E. Frackowiak, J. Mittal, M. Monthioux, Chem. Phys. Lett. 434, 73 (2007)CrossRefGoogle Scholar
  50. 50.
    M.C. Liu, L.B. Kong, C. Lu, X.M. Li, Y.C. Luo, L. Kang, ACS Appl. Mater. Interfaces 4, 4631 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Energy ScienceAlagappa UniversityKaraikudiIndia
  2. 2.Graduate School of Life Science and Systems EngineeringKyushu Institute of TechnologyKitakyushu, FukuokaJapan

Personalised recommendations