Skip to main content
Log in

Interface conduction and photo-induced electrical transport in the heterojunction formed by GaAs and Ce3+-doped SnO2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electrical and optical properties of heterojunction composed of GaAs and SnO2 are presented. SnO2 thin film was deposited by sol-gel-dip-coating and doped with Ce3+ whereas the GaAs layer was deposited by resistive evaporation or sputtering. The purpose of this investigation is to combine the blue emission properties of the rare-earth with the unique transport properties generated by the heterojunction assembly. We have found that illumination with light of energy above the GaAs bandgap and below the SnO2 bandgap decrease drastically the GaAs/SnO2 heterojunction resistance. Under this condition, the sample exhibits an unusual behavior: the conductivity is practically temperature independent. This behavior was related with the presence of interface conduction, which could be associated to a two-dimensional electron gas at the GaAs/SnO2 interface. This feature takes places only for the sample where the GaAs bottom layer is deposited by sputtering, which presents a smoother surface as inferred by AFM images. The deposition sequence of the layers is fundamental to provide sample excitation which strongly contributes to the sample conductivity. Energies above the SnO2 bandgap only excite the top oxide layer. When the GaAs is the top layer it acts as a shield, and only effects from the ions located close to the interface SnO2/GaAs are observed. Luminescence from the Ce3+ ion can be detected, but overlap with emission from the matrix. Results suggest that a more organized GaAs bottom layer may contribute for a more efficient emission and also for signal separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Ishii, S. Komuro, T. Morikawa, J. Appl. Phys. 94(6), 3823–3827 (2003)

    Article  Google Scholar 

  2. S.C. Ray, M.K. Karanjai, D. Dasgupta, Surf. Coat. Technol 102(1), 73–80 (1998)

    Article  Google Scholar 

  3. E. Dien, J.M. Laurent, A. Smith, J Eur. Ceram. Soc 19(6–7), 787–789 (1999)

    Article  Google Scholar 

  4. H. Peng, H. Song, B. Chen, J. Wang, S. Lu, X. Kong, J. Zhang, J. Chem. Phys. 118(7), 3277–3282 (2003)

    Article  Google Scholar 

  5. X. Yang, M.J. Jurkovic, J.B. Heroux, W.I. Wang Appl. Phys. Lett. 75(2),178–180 (1999).

    Google Scholar 

  6. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1985)

    Google Scholar 

  7. T. F. Pineiz, L. V.A. Scalvi, M.J. Saeki and E. A. Morais, J. Electron. Mat. 39(8), 1170–1176 (2010).

    Article  Google Scholar 

  8. T.F. Pineiz, E.A. de Morais, L.V.A. Scalvi, C.F. Bueno, Appl. Surf. Sci. 267, 200–205 (2013)

    Article  Google Scholar 

  9. C.F. Bueno, L.V.A. Scalvi, M.S. Li, M. J. Saeki, Opt. Mater. Express 5 59–72 (2015).

    Article  Google Scholar 

  10. G. Du, Y. Cui, X.C. Xia, X.P. Li, H.C. Zhu, B.L. Zhang, Y.T. Zhang, Y. Ma Y, Appl. Phys. Lett. 90(24), 243504–243506 (2007)

    Article  Google Scholar 

  11. M. Soylu, A.A. Al-Ghamdi, O.A. Al-Hartomy, F. El-Tantawyd, F. Yakuphanoglu, Physica E Low Dimens. Syst. Nanostruct. 64, 240–245 (2014).

    Article  Google Scholar 

  12. S.T. Tan, J.L. Zhao, S. Iwan, X.W. Su, X. Tang, J. Ye, M. Bosman, L.J. Tang, G.Q. Lo, K.L. Teo IEEE Trans. On Electron. Dev. 57(1):129–233 (2010).

    Article  Google Scholar 

  13. E. Cuculescu, I. Evtodiev, M. Caraman, Thin Solid Films 517(7), 2515–2518 (2009)

    Article  Google Scholar 

  14. S. Vatavu, H. Zhao, I. Caraman, P. Gasin, C. Ferekides, Thin Solid Films 519(21), 7176–7179 (2011)

    Article  Google Scholar 

  15. J.L.B Maciel Jr, E.A. Floriano, L.V.A. Scalvi, L.P. Ravaro, J Mater Sci 46, 6627–6632 (2011)

    Article  Google Scholar 

  16. M.H. Boratto, L.V.A. Scalvi, Ceram. Int. 40, 3785–3791(2014)

    Article  Google Scholar 

  17. M.H. Boratto, L.V.A. Scalvi, J.L.B. Maciel Jr, M.J. Saeki, E.A. Floriano, Mater. Res. 17(6), 1420–1426 (2014)

    Article  Google Scholar 

  18. P. Dorenbos Phys. Rev. B Condens. Matter Mater. Phys. 64, 125117 (2001).

    Article  Google Scholar 

  19. K. Annapurna, R.N. Dwivedi, P. Kundu, S. Buddhydu, Mater. Lett. 58, 787 (2004)

    Article  Google Scholar 

  20. H. Zhang, X. Fu, S. Niu, G. Sun, Q. Xin, J. Lumin. 115, 7 (2005)

    Article  Google Scholar 

  21. F. Gu, S.F. Wang, M.K. Lu, Y.X. Qi, G.J. Zhou, J. Cryst. Growth 255, 357 (2003)

    Article  Google Scholar 

  22. F. Gu, S.F. Wang, M.K. Lu, Y.X. Qi, Opt. Mater. 25, 59 (2004)

    Article  Google Scholar 

  23. Y. Yang, L. Liu, M. Li, C. Mi, Y. Liu, X. Su, J. Zhang, X. Li, F. Yu, S. Cai. Sci. Adv. Mater. 7(7), 1304–1309 (2015)

    Article  Google Scholar 

  24. Z. Mao, Y. Zhu, Y. Wang, L. Gan, J. Mater. Sci. 49(13), 4439–4444 (2014)

    Article  Google Scholar 

  25. K. Horn., in Electronic Structure of Semiconductor Surfaces, ed by K. Horn, M. Scheffler. Handbook of Surface Science, vol 2. (Elsevier, Amsterdam, 2000), p. 385–431.

  26. D.C. Tsui, Phys. Rev., 24, 303–305 (1970)

    Google Scholar 

  27. C.W. Bark, P. Sharma, Y. Wang, S.H. Beak, S. Lee, S. Ryu, Nano Lett. 12, 1765–1771 (2012)

    Article  Google Scholar 

  28. Y. Wang, M.K. Niranjan, S.S. Jaswal, E.Y. Tsymbal, Phys. Rev. B 80, 165130-1-10 (2009)

    Google Scholar 

  29. E.Y. Wang, R.N. Legge, IEEE Trans. Electron Dev. 25(7), 800–803 (1978)

    Article  Google Scholar 

  30. G.D. Azevedo, J. H. D. Silva, E. Avendano, Nucl. Instr. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 238 (1–4), 329–333 (2005)

    Article  Google Scholar 

  31. JCPDS-Joint Commitee on Powder Diffraction Standards/International Center for Diffraction Data-ICDD, Powder Diffraction Data (Pennsylvania, JCPDS/ICDD, 1983)

  32. L. Bian, F. Du, S. Yang, Q. Ren, Q.L., Liu. J. Lumin. 137, 168–172 (2013)

    Article  Google Scholar 

  33. C.C. Viana, H.R. Paes Jr, Cerâmica 51 (317), 24–29 (2005).

    Article  Google Scholar 

  34. M.S. Inpasalini, A. Singh, S. Mukherjee. J. Mater. Sci. Mater. Electron. 27, 4392–4398 (2016)

    Article  Google Scholar 

  35. S. L. Ko, S. Park, C.-W. Kim, D. Lee, M.-S. Choi, C. Lee, C. Jin, Appl. Phys. A 121, 715–721 (2015)

    Article  Google Scholar 

  36. R. Sánchez Zeferino, U. Pal, R. Meléndrez, M. Barboza Flores, Adv. Nano Res. 1(4), 193–202 (2013)

    Article  Google Scholar 

  37. V. Geraldo, V. Briois, L.V.A. Scalvi, J. C.V. Santilli, Eur. Ceram. Soc 27, 4265–4268 (2007)

    Article  Google Scholar 

  38. C.F. Bueno, D. H. O. Machado, T. F. Pineiz, L.V.A. Scalvi, Mater. Res. 16 (4), 831–838 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Andre L.J. Pereira for the help in preparing the GaAs films by sputtering, and the Brazilian agencies: CAPES, CNPq (Grant 471359/2013-0) and Grants 2006/00480-9 and 2016/12216-6 São Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis V. A. Scalvi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, D.H.O., Scalvi, L.V.A., Tabata, A. et al. Interface conduction and photo-induced electrical transport in the heterojunction formed by GaAs and Ce3+-doped SnO2 . J Mater Sci: Mater Electron 28, 5415–5424 (2017). https://doi.org/10.1007/s10854-016-6202-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6202-x

Keywords

Navigation