Interface conduction and photo-induced electrical transport in the heterojunction formed by GaAs and Ce3+-doped SnO2

  • Diego H. O. Machado
  • Luis V. A. Scalvi
  • Américo Tabata
  • José H. D. da Silva


Electrical and optical properties of heterojunction composed of GaAs and SnO2 are presented. SnO2 thin film was deposited by sol-gel-dip-coating and doped with Ce3+ whereas the GaAs layer was deposited by resistive evaporation or sputtering. The purpose of this investigation is to combine the blue emission properties of the rare-earth with the unique transport properties generated by the heterojunction assembly. We have found that illumination with light of energy above the GaAs bandgap and below the SnO2 bandgap decrease drastically the GaAs/SnO2 heterojunction resistance. Under this condition, the sample exhibits an unusual behavior: the conductivity is practically temperature independent. This behavior was related with the presence of interface conduction, which could be associated to a two-dimensional electron gas at the GaAs/SnO2 interface. This feature takes places only for the sample where the GaAs bottom layer is deposited by sputtering, which presents a smoother surface as inferred by AFM images. The deposition sequence of the layers is fundamental to provide sample excitation which strongly contributes to the sample conductivity. Energies above the SnO2 bandgap only excite the top oxide layer. When the GaAs is the top layer it acts as a shield, and only effects from the ions located close to the interface SnO2/GaAs are observed. Luminescence from the Ce3+ ion can be detected, but overlap with emission from the matrix. Results suggest that a more organized GaAs bottom layer may contribute for a more efficient emission and also for signal separation.


GaAs SnO2 GaAs Layer SnO2 Film Interface Conduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Prof. Andre L.J. Pereira for the help in preparing the GaAs films by sputtering, and the Brazilian agencies: CAPES, CNPq (Grant 471359/2013-0) and Grants 2006/00480-9 and 2016/12216-6 São Paulo Research Foundation (FAPESP).


  1. 1.
    M. Ishii, S. Komuro, T. Morikawa, J. Appl. Phys. 94(6), 3823–3827 (2003)CrossRefGoogle Scholar
  2. 2.
    S.C. Ray, M.K. Karanjai, D. Dasgupta, Surf. Coat. Technol 102(1), 73–80 (1998)CrossRefGoogle Scholar
  3. 3.
    E. Dien, J.M. Laurent, A. Smith, J Eur. Ceram. Soc 19(6–7), 787–789 (1999)CrossRefGoogle Scholar
  4. 4.
    H. Peng, H. Song, B. Chen, J. Wang, S. Lu, X. Kong, J. Zhang, J. Chem. Phys. 118(7), 3277–3282 (2003)CrossRefGoogle Scholar
  5. 5.
    X. Yang, M.J. Jurkovic, J.B. Heroux, W.I. Wang Appl. Phys. Lett. 75(2),178–180 (1999).Google Scholar
  6. 6.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1985)Google Scholar
  7. 7.
    T. F. Pineiz, L. V.A. Scalvi, M.J. Saeki and E. A. Morais, J. Electron. Mat. 39(8), 1170–1176 (2010).CrossRefGoogle Scholar
  8. 8.
    T.F. Pineiz, E.A. de Morais, L.V.A. Scalvi, C.F. Bueno, Appl. Surf. Sci. 267, 200–205 (2013)CrossRefGoogle Scholar
  9. 9.
    C.F. Bueno, L.V.A. Scalvi, M.S. Li, M. J. Saeki, Opt. Mater. Express 5 59–72 (2015).CrossRefGoogle Scholar
  10. 10.
    G. Du, Y. Cui, X.C. Xia, X.P. Li, H.C. Zhu, B.L. Zhang, Y.T. Zhang, Y. Ma Y, Appl. Phys. Lett. 90(24), 243504–243506 (2007)CrossRefGoogle Scholar
  11. 11.
    M. Soylu, A.A. Al-Ghamdi, O.A. Al-Hartomy, F. El-Tantawyd, F. Yakuphanoglu, Physica E Low Dimens. Syst. Nanostruct. 64, 240–245 (2014).CrossRefGoogle Scholar
  12. 12.
    S.T. Tan, J.L. Zhao, S. Iwan, X.W. Su, X. Tang, J. Ye, M. Bosman, L.J. Tang, G.Q. Lo, K.L. Teo IEEE Trans. On Electron. Dev. 57(1):129–233 (2010).CrossRefGoogle Scholar
  13. 13.
    E. Cuculescu, I. Evtodiev, M. Caraman, Thin Solid Films 517(7), 2515–2518 (2009)CrossRefGoogle Scholar
  14. 14.
    S. Vatavu, H. Zhao, I. Caraman, P. Gasin, C. Ferekides, Thin Solid Films 519(21), 7176–7179 (2011)CrossRefGoogle Scholar
  15. 15.
    J.L.B Maciel Jr, E.A. Floriano, L.V.A. Scalvi, L.P. Ravaro, J Mater Sci 46, 6627–6632 (2011)CrossRefGoogle Scholar
  16. 16.
    M.H. Boratto, L.V.A. Scalvi, Ceram. Int. 40, 3785–3791(2014)CrossRefGoogle Scholar
  17. 17.
    M.H. Boratto, L.V.A. Scalvi, J.L.B. Maciel Jr, M.J. Saeki, E.A. Floriano, Mater. Res. 17(6), 1420–1426 (2014)CrossRefGoogle Scholar
  18. 18.
    P. Dorenbos Phys. Rev. B Condens. Matter Mater. Phys. 64, 125117 (2001).CrossRefGoogle Scholar
  19. 19.
    K. Annapurna, R.N. Dwivedi, P. Kundu, S. Buddhydu, Mater. Lett. 58, 787 (2004)CrossRefGoogle Scholar
  20. 20.
    H. Zhang, X. Fu, S. Niu, G. Sun, Q. Xin, J. Lumin. 115, 7 (2005)CrossRefGoogle Scholar
  21. 21.
    F. Gu, S.F. Wang, M.K. Lu, Y.X. Qi, G.J. Zhou, J. Cryst. Growth 255, 357 (2003)CrossRefGoogle Scholar
  22. 22.
    F. Gu, S.F. Wang, M.K. Lu, Y.X. Qi, Opt. Mater. 25, 59 (2004)CrossRefGoogle Scholar
  23. 23.
    Y. Yang, L. Liu, M. Li, C. Mi, Y. Liu, X. Su, J. Zhang, X. Li, F. Yu, S. Cai. Sci. Adv. Mater. 7(7), 1304–1309 (2015)CrossRefGoogle Scholar
  24. 24.
    Z. Mao, Y. Zhu, Y. Wang, L. Gan, J. Mater. Sci. 49(13), 4439–4444 (2014)CrossRefGoogle Scholar
  25. 25.
    K. Horn., in Electronic Structure of Semiconductor Surfaces, ed by K. Horn, M. Scheffler. Handbook of Surface Science, vol 2. (Elsevier, Amsterdam, 2000), p. 385–431.Google Scholar
  26. 26.
    D.C. Tsui, Phys. Rev., 24, 303–305 (1970)Google Scholar
  27. 27.
    C.W. Bark, P. Sharma, Y. Wang, S.H. Beak, S. Lee, S. Ryu, Nano Lett. 12, 1765–1771 (2012)CrossRefGoogle Scholar
  28. 28.
    Y. Wang, M.K. Niranjan, S.S. Jaswal, E.Y. Tsymbal, Phys. Rev. B 80, 165130-1-10 (2009)Google Scholar
  29. 29.
    E.Y. Wang, R.N. Legge, IEEE Trans. Electron Dev. 25(7), 800–803 (1978)CrossRefGoogle Scholar
  30. 30.
    G.D. Azevedo, J. H. D. Silva, E. Avendano, Nucl. Instr. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 238 (1–4), 329–333 (2005)CrossRefGoogle Scholar
  31. 31.
    JCPDS-Joint Commitee on Powder Diffraction Standards/International Center for Diffraction Data-ICDD, Powder Diffraction Data (Pennsylvania, JCPDS/ICDD, 1983)Google Scholar
  32. 32.
    L. Bian, F. Du, S. Yang, Q. Ren, Q.L., Liu. J. Lumin. 137, 168–172 (2013)CrossRefGoogle Scholar
  33. 33.
    C.C. Viana, H.R. Paes Jr, Cerâmica 51 (317), 24–29 (2005).CrossRefGoogle Scholar
  34. 34.
    M.S. Inpasalini, A. Singh, S. Mukherjee. J. Mater. Sci. Mater. Electron. 27, 4392–4398 (2016)CrossRefGoogle Scholar
  35. 35.
    S. L. Ko, S. Park, C.-W. Kim, D. Lee, M.-S. Choi, C. Lee, C. Jin, Appl. Phys. A 121, 715–721 (2015)CrossRefGoogle Scholar
  36. 36.
    R. Sánchez Zeferino, U. Pal, R. Meléndrez, M. Barboza Flores, Adv. Nano Res. 1(4), 193–202 (2013)CrossRefGoogle Scholar
  37. 37.
    V. Geraldo, V. Briois, L.V.A. Scalvi, J. C.V. Santilli, Eur. Ceram. Soc 27, 4265–4268 (2007)CrossRefGoogle Scholar
  38. 38.
    C.F. Bueno, D. H. O. Machado, T. F. Pineiz, L.V.A. Scalvi, Mater. Res. 16 (4), 831–838 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Diego H. O. Machado
    • 1
  • Luis V. A. Scalvi
    • 1
  • Américo Tabata
    • 1
  • José H. D. da Silva
    • 1
  1. 1.Graduate Program in Materials Science and Technology, Department of Physics, FC and POSMATUNESP, São Paulo State UniversityBauruBrazil

Personalised recommendations