Synthesis and characterization of Fe3O4@Al2O3 nanoparticles and investigation its catalyst application

  • Elahe-Sadat Tekiye
  • Zahra Aghajani
  • Mahboubeh A. Sharif


In the current study, Fe3O4@Al2O3 nanoparticles were successfully synthesized through the simple and cost effective co-precipitation method and were characterized using XRD, SEM, and FT-IR analysis. Since, oxidation of alcohols is one of the most fundamental and challenging processes in organic chemistry, therefore; Fe3O4@Al2O3 nanoparticles were applied as the catalyst for oxidation of alcohol. Besides, the effects of several oxidation reactions parameters such as catalyst concentration, type of solvents, and reaction temperature were studied on the oxidation percentage through the analysis of variance (ANOVA). In addition, recyclability of as-synthesized Fe3O4@Al2O3 catalyst was studied which demonstrated that Fe3O4@Al2O3 nano catalyst could be reused up to five runs without any significant loss of activities. The oxidation results indicated that Fe3O4@Al2O3 nano catalyst provides a high oxidation yield of 91%.


Catalyst Concentration Aluminum Isopropoxide Oxidation Percentage Catalyst Yield Taguchi Robust Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors acknowledge the kind financial supports of the Research Council of Qom Branch, Islamic Azad University, Qom, Iran.


  1. 1.
    M. Ramezani, A. Davoodi, A. Malekizad, S.M. Hosseinpour-Mashkani, J. Mater. Sci. 26, 3957 (2015)Google Scholar
  2. 2.
    A. Javidan, S. Rafizadeh, S.M. Hosseinpour-Mashkani, Sci. Semicond. Process. 27, 468 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Moradiganjeh, Z. Aghajani, J. Mater. Sci. 27, 5948 (2016)Google Scholar
  4. 4.
    A. Sobhani-Nasab, M. Maddahfar, S.M. Hosseinpour-Mashkani, J. Mol. Liq. 216, 1 (2016)CrossRefGoogle Scholar
  5. 5.
    H. Zeynali, S. Behnam-Mousavi, S.M. Hosseinpour-Mashkani, Mater. Lett. 144, 65 (2015)CrossRefGoogle Scholar
  6. 6.
    M.R. Gao, J. Jiang, S.H. Yu, Small 8, 13 (2012)CrossRefGoogle Scholar
  7. 7.
    J. Mu, B. Chen, Z. Guo, M. Zhang, Z. Zhang, P. Zhang, C. Shao, Y. Liu, Nanoscale 3, 5034 (2011)CrossRefGoogle Scholar
  8. 8.
    P. Bhunia, G. Kim, C. Baik, H. Lee, Chem. Commun. 48, 9888 (2012)CrossRefGoogle Scholar
  9. 9.
    F. Mi, X. Chen, Y. Ma, S. Yin, F. Yuan, H. Zhang, Chem. Commun. 47, 12804 (2011)CrossRefGoogle Scholar
  10. 10.
    L.H. Shen, J.F. Bao, D. Wang, Y.X. Wang, Z.W. Chen, L. Ren, X. Zhou, X.B. Ke, M. Chen, A.Q. Yang, Nanoscale 5, 2133 (2013)CrossRefGoogle Scholar
  11. 11.
    Y. Liu, L. Zhou, Y. Hu, C. Guo, H. Qian, F. Zhang, X.W. Lou, J. Mater. Chem. 21, 18359 (2011)CrossRefGoogle Scholar
  12. 12.
    W. Fan, W. Gao, C. Zhang, W.W. Tjiu, J. Pan, T. Liu, J. Mater. Chem. 22, 25108 (2012)CrossRefGoogle Scholar
  13. 13.
    B. Geng, F. Zhan, H. Jiang, Y. Guo, Z. Xing, Chem. Commun. 44, 5773 (2008)CrossRefGoogle Scholar
  14. 14.
    K.C. Chin, G.L. Chong, C.K. Poh, L.H. Van, C.H. Sow, J. Lin, A.T.S. Wee, J. Phys. Chem. C 111, 9136 (2007)CrossRefGoogle Scholar
  15. 15.
    X. Li, Z. Si, Y. Lei, J. Tang, S. Wang, S. Su, S. Song, L. Zhao, H. Zhang, CrystEngComm 12, 2060 (2010)CrossRefGoogle Scholar
  16. 16.
    X. Li, Z. Si, Y. Lei, X. Li, J. Tang, S. Song, H. Zhang, CrystEngComm 13, 642 (2011)CrossRefGoogle Scholar
  17. 17.
    L.D. Hart, Alumina chemicals: science and technology handbook, (American Ceramic Society, Columbus, 1990)Google Scholar
  18. 18.
    A. Laachachi, M. Ferriol, M. Cochez, J.M. Lopez Cuesta, D. Ruch, Polym. Degrad. Stab. 94, 1373 (2009)CrossRefGoogle Scholar
  19. 19.
    I. Lukić, J. Krstić, D. Jovanović, D. Skala, Bioresour. Technol. 100, 4690 (2009)CrossRefGoogle Scholar
  20. 20.
    M. Touzin, D. Goeuriot, C. Guerret-Piécourt, D. Juvé, H.J. Fitting, J. Eur. Ceram. Soc. 30, 805 (2010)CrossRefGoogle Scholar
  21. 21.
    A. Keyvani, M. Saremi, M. Heydarzadeh Sohi, J. Alloys Compd. 506, 103 (2010)CrossRefGoogle Scholar
  22. 22.
    R. Lach, K. Haberko, M.M. Bućko, M. Szumera, G. Grabowski, J. Eur. Ceram. Soc. 31, 1889 (2011)CrossRefGoogle Scholar
  23. 23.
    B.A. Steinhoff, S.S. Stahl, J. Am. Chem. Soc. 128(13), 4348 (2006)CrossRefGoogle Scholar
  24. 24.
    S. Fangzheng, S.C. Mathew, G. Lipner, X. Fu, M. Antonietti, S. Blechert, X. Wang, J. Am. Chem. Soc. 132(46), 16299 (2010)CrossRefGoogle Scholar
  25. 25.
    M.A. Pasha, S. Nagashree, Ultrason. Sonochem. 20, 810 (2013)CrossRefGoogle Scholar
  26. 26.
    K. Mori, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc. 126, 10657 (2004)CrossRefGoogle Scholar
  27. 27.
    R.H. Ingle, N.K. Kala-Raj, P. Manikandan, J. Mol. Catal. A 262, 52 (2007)CrossRefGoogle Scholar
  28. 28.
    P. Chaudri, M. Hess, T. Weyhermuller, K. Wieghardt, Angew. Chem. Int. Ed. Engl. 38, 1095 (1999)CrossRefGoogle Scholar
  29. 29.
    B.Z. Zhan, M.A. White, T.K. Sham, J.A. Pincock, R.J. Doucet, K.V. Ramana Rao, K.N. Robertson, S.T. Cameron, J. Am. Chem. Soc. 125, 2195 (2003)CrossRefGoogle Scholar
  30. 30.
    D. Tripathy, A.O. Adeyeye, Phys. Rev. B 76, 17 (2007)CrossRefGoogle Scholar
  31. 31.
    A. Javidan, S. Rafizadeh, S. M. Hosseinpour-Mashkani, Mater. Sci. Semicond. Process. 27, 468 (2014)CrossRefGoogle Scholar
  32. 32.
    N. Mir, M. Bahrami, E. Safari, S.M. Hosseinpour-Mashkani, J. Clust. Sci. 26, 1103 (2015)CrossRefGoogle Scholar
  33. 33.
    K.D. Kim, D.W. Choi, Y.H. Choa, H.T. Kim, Coll. Surf. A 311, 170 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Elahe-Sadat Tekiye
    • 1
  • Zahra Aghajani
    • 1
  • Mahboubeh A. Sharif
    • 1
  1. 1.Department of Chemistry, Qom BranchIslamic Azad UniversityQomIran

Personalised recommendations