Advertisement

Microwave synthesis of metal doped TiO2 for photocatalytic applications

  • J. Maragatha
  • S. Rajendran
  • T. Endo
  • S. Karuppuchamy
Article

Abstract

Nanostructured metal (Sn, Cu and Ni) doped TiO2 was successfully synthesized by microwave irradiation method. Metal doped TiO2 was characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and UV–Vis spectroscopy (UV–Vis). The XRD pattern confirms the formation of monoclinic phase TiO2 and metal doped TiO2 samples. SEM images show the attractive morphologies for metal doped TiO2 nanopowders. The photocatalytic activity of the synthesized sample was also studied by the decomposition of methylene blue dye under UV light irradiation.

Keywords

TiO2 Methylene Blue Photocatalytic Activity Methylene Blue Ultra Violet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to the Department of physics and chemistry, Alagappa University for providing the XRD, SEM and FTIR characterization facilities.

References

  1. 1.
    A. Zaleska, Recent Pat. Eng. 2, 157–164 (2008)CrossRefGoogle Scholar
  2. 2.
    Z. Zhang, Y. Zhou, Y. Zhang, X. Sheng, S. Zhou, S. Xiang, Appl. Surf. Sci. 286, 344–350 (2013)CrossRefGoogle Scholar
  3. 3.
    B. Pant, H.R. Pant, N.A.M. Barakat, M. Park, K. Jeon, Y. Choi, H.Y. Kim, Ceram. Int. 39, 7029–7035 (2013)CrossRefGoogle Scholar
  4. 4.
    S. Karuppuchamy, M. Iwasaki, H. Minoura, Vacuum 81, 708–712 (2007)CrossRefGoogle Scholar
  5. 5.
    T. Furukawa, H. Matsui, H. Hasegawa, S. Karuppuchamy, M. Yoshihara, Solid State Commun. 142, 99–103 (2007)CrossRefGoogle Scholar
  6. 6.
    S. Yamamoto, H. Matsui, S. Ishiyama, S. Karuppuchamy, M. Yoshihara, Mater. Sci. Eng. B 135, 120–124 (2006)CrossRefGoogle Scholar
  7. 7.
    H. Matsui, T. Kawahara, R. Kudo, M. Uda, S. Karuppuchamy, M. Yoshihara, J. Alloys Compd. 462, 20–23 (2008)CrossRefGoogle Scholar
  8. 8.
    H. Matsui, S. Karuppuchamy, J. Yamaguchi, M. Yoshihara, J. Photochem. Photobiol. A Chem. 189, 280–285 (2007)CrossRefGoogle Scholar
  9. 9.
    H. Matsui, T. Kuroda, K. Otsuki, K. Yokoyama, T. Kawahara, S. Karuppuchamy, M. Yoshihara, Tanso 222, 114–117 (2006)CrossRefGoogle Scholar
  10. 10.
    M. Thamima, S. Karuppuchamy, Adv. Sci. Eng. Med. 7, 18–25 (2015)CrossRefGoogle Scholar
  11. 11.
    T. Oekermann, S. Karuppuchamy, T. Yoshida, D. Schlettwein, D. Wohrle, H. Minoura, J. Electrochem. Soc. 151, 62–68 (2004)CrossRefGoogle Scholar
  12. 12.
    S. Karuppuchamy, S. Ito, Vacuum 82, 547–550 (2008)CrossRefGoogle Scholar
  13. 13.
    H. Miyazaki, H. Matsui, T. Kuwamoto, S. Ito, S. Karuppuchamy, M. Yoshihara, Micropor. Mesopor. Mater. 118, 518–522 (2009)CrossRefGoogle Scholar
  14. 14.
    H. Miyazaki, H. Matsui, Y. Kita, S. Karuppuchamy, S. Ito, M. Yoshihara, Curr. Appl. Phys. 9, 155–160 (2009)CrossRefGoogle Scholar
  15. 15.
    R. Dhilip Kumar, S. Karuppuchamy, J. Mater. Sci. Mater. Electron. 26, 3256–3261 (2015)CrossRefGoogle Scholar
  16. 16.
    H. Matsui, N. Bandou, S. Karuppuchamy, M.A. Hassan, M. Yoshihara, Ceram. Int. 38, 1605–1610 (2012)CrossRefGoogle Scholar
  17. 17.
    A.M.H. Milad, L.J. Minggu, M.B. Kassim, W.R.W. Daud, Ceram. Int. 39, 3731–3739 (2013)CrossRefGoogle Scholar
  18. 18.
    S. Karuppuchamy, N. Suzuki, S. Ito, T. Endo, Curr. Appl. Phys. 9, 243–248 (2009)CrossRefGoogle Scholar
  19. 19.
    K. Santhi, P. Manikandan, C. Rani, S. Karuppuchamy, Appl. Nanosci. 5, 373–378 (2015)CrossRefGoogle Scholar
  20. 20.
    N. Suzuki, S. Karuppuchamy, S. Ito, J. Appl. Electrochem. 39, 141–146 (2009)CrossRefGoogle Scholar
  21. 21.
    H. Matsui, T. Okajima, S. Karuppuchamy, M. Yoshihara, J. Alloy. Compd. 468, 27–32 (2009)CrossRefGoogle Scholar
  22. 22.
    H. Matsui, S. Nagano, S. Karuppuchamy, M. Yoshihara, Curr. Appl. Phys. 9, 561–566 (2009)CrossRefGoogle Scholar
  23. 23.
    H. Matsui, Y. Saitou, S. Karuppuchamy, M.A. Hassan, M. Yoshihara, J. Alloy. Compd. 538, 177–182 (2012)CrossRefGoogle Scholar
  24. 24.
    S. Lee, Y. Lee, D.H. Kim, J.H. Moon, Appl. Mater. Interfaces 5, 12526–12532 (2013)CrossRefGoogle Scholar
  25. 25.
    S. Karuppuchamy, Y. Andou, T. Endo, Appl. Nanosci. 3, 291–293 (2013)CrossRefGoogle Scholar
  26. 26.
    N. Okada, S. Karuppuchamy, M. Kurihara, Chem. Lett. 34, 16–17 (2005)CrossRefGoogle Scholar
  27. 27.
    K. Palanivelu, J.S. Im, Y.S. Lee, Carbon Sci. 8, 214–224 (2007)CrossRefGoogle Scholar
  28. 28.
    W.I. Nawawi, M.A. Nawi, J. Mol Cata. A Chem. 374–375, 39–45 (2013)CrossRefGoogle Scholar
  29. 29.
    H. Sayılkan, Appl. Catal. A General 319, 230–236 (2007)CrossRefGoogle Scholar
  30. 30.
    V.B.R. Boppana, R.F. Lobo, ACS Catal. 1, 923–928 (2011)CrossRefGoogle Scholar
  31. 31.
    C.M. Fan, Y. Peng, Q. Zhu, L. Lin, R.X. Wang, A.W. Xu, J. Phys. Chem. C 1172, 24157–24166 (2013)CrossRefGoogle Scholar
  32. 32.
    T.D. Pham, B.K. Lee, Appl. Surf. Sci. 296, 15–23 (2014)CrossRefGoogle Scholar
  33. 33.
    C.Y. Tsai, H.C. Hsi, T.H. Kuo, Y.M. Chang, J.H. Liou, Aerosol. Air Qual. Res. 13, 639–648 (2013)Google Scholar
  34. 34.
    A.K. Tripathi, M.C. Mathpal, P. Kumar, V. Agrahari, M.K. Singh, S.K. Mishra, M.M. Ahmad, Adv. A. Agarwal. Mater. Lett. 6, 201–208 (2015)CrossRefGoogle Scholar
  35. 35.
    K.J. Salem, M.T. Hammad, R.R. Harrison, J. Mater. Sci. Mater. Electron., 24, 1670–1676 (2013)CrossRefGoogle Scholar
  36. 36.
    S. Cizauskaite, V. Reichlova, G. Nenartaviciene, A. Beganskiene, J. Pinkas, A. Kareiva, Mater. Sci. 25, 3 (2007)Google Scholar
  37. 37.
    B. Samran, P. Krongkitsiri, S. Pimmongkol, S. Budngam, U. Tipparach, Adv. Mater. Res. 802, 104–108 (2013)CrossRefGoogle Scholar
  38. 38.
    J. Vonch, A. Yarin, C.M. Megaridis, J. Undergraduate Res 1, 1 (2007)Google Scholar
  39. 39.
    S. Komarneni, Curr. Sci. 85, 12 (2003)Google Scholar
  40. 40.
    Y.Y. Huang, K.S. Chou, Ceram. Int. 29, 485–493 (2003)CrossRefGoogle Scholar
  41. 41.
    R. Dhilip Kumar, S. Karuppuchamy, J. Mater. Sci. Mater. Electron. 26, 6439–6443 (2015)CrossRefGoogle Scholar
  42. 42.
    R. Dhilip Kumar, S. Karuppuchamy, Ceram. Int. 40, 12397–12402 (2014)CrossRefGoogle Scholar
  43. 43.
    M.R. Mahmoudian, W.J. Basirun, Y. Alias, M. Ebadi, Appl. Surf. Sci. 257, 8317–8325 (2011)CrossRefGoogle Scholar
  44. 44.
    N. Wongpisutpaisan, N. Vittayakorn, A. Ruangphanit, W. Pecharapa, Sains Malaysiana 42, 175–181 (2013)Google Scholar
  45. 45.
    G. Viruthagiri, P. Praveen, S. Mugundan, E. Gopinathan, Indian J. Adv. Chem. Sci. 1, 132–138 (2013)Google Scholar
  46. 46.
    E.H. Faria, A.L. Marçal, E.J. Nassar, K.J. Ciuffi, P.S. Calefi, Mater. Res. 10, 413–417 (2007)CrossRefGoogle Scholar
  47. 47.
    P. Dhandapani, S. Maruthamuthu, G. Rajagopal, J. Photochem. Photobiol. B Biol. 110, 43–49 (2012)CrossRefGoogle Scholar
  48. 48.
    J. Maragatha, K. Jothivenkatachalam, S. Karuppuchamy, J. Mater. Sci. Mater. Electron. 27, 9233–9239 (2016)CrossRefGoogle Scholar
  49. 49.
    S.N.R. Inturi, T. Boningari, M. Suidan, P.G. Smirniotis, Appl. Cata. B Environ. 144, 333–342 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • J. Maragatha
    • 1
  • S. Rajendran
    • 2
  • T. Endo
    • 3
  • S. Karuppuchamy
    • 1
  1. 1.Department of Energy ScienceAlagappa UniversityKaraikudiIndia
  2. 2.Department of PhysicsAlagappa UniversityKaraikudiIndia
  3. 3.Molecular Engineering InstituteKinki UniversityIizukaJapan

Personalised recommendations