Growth and characterization of sol–gel processed rectangular shaped nanostructured ferric oxide thin film followed by humidity and gas sensing

  • B. C. Yadav
  • K. S. Chauhan
  • S. Singh
  • R. K. Sonker
  • S. Sikarwar
  • R. Kumar


In the present work nanostructured ferric oxide has been synthesized using sol–gel method. Thin films of ferric oxide were fabricated via spin coating process. The surface of the thin film was scanned by scanning electron microscope that exhibited the surface morphology of ferric oxide nanostructures. The material was also characterized by XRD, Acoustic particle sizer and FTIR. All the particles distributed on the surface have some spaces among them known as pores. These pores serve as adsorption sites for moisture and other gases. EDX confirmed the elements forming the ferric oxide in pure form. The particle size of the ferric oxide was estimated as ~12.2 nm. The pore size of the film was ~50 nm i.e., nature is mesoporous. Annealing effect on the surface morphology was also observed. Humidity sensing, electrical as well as optical of the prepared film was carried out. The results showed the suitability of material for the development of humidity sensors. Variations in resistance with the exposure of LPG were recorded and found that resistance of film increases with the increasing exposure time and concentration of gas. The maximum sensing response of the sensor was recorded as 3.26 for 1000 ppm at room temperature. The response and recovery times of the sensor were found to be ~12 and 9 min, respectively.


Sensor Response Ferric Oxide Humidity Sensor Ammonium Hydroxide Solution Particle Size Distribution Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The corresponding author is grateful to Department of Science and Technology, Government of India for SERC-FAST TRACK, Project SR/FTP/PS-21/2009.


  1. 1.
    Z. Wei, X. Wei, S. Wang, D. He, Mater. Lett. 118, 107–110 (2014)CrossRefGoogle Scholar
  2. 2.
    L. Machala, J. Tucek, R. Zboril, Chem. Mater. 23, 3255–3272 (2011)CrossRefGoogle Scholar
  3. 3.
    R.K. Sonker, B.C. Yadav, Mater. Today Proc. 3, 2315–2320 (2016)CrossRefGoogle Scholar
  4. 4.
    B.C. Yadav, S. Singh, A. Yadav, Appl. Surf. Sci. 257, 1960–1966 (2011)CrossRefGoogle Scholar
  5. 5.
    J. Jiang, Y.M. Yang, Mater. Lett. 61, 4276–4279 (2007)CrossRefGoogle Scholar
  6. 6.
    S. Singh, B.C. Yadav, A. Singh, P.K. Dwivedi, Adv. Mater. Lett. 3(2), 154–160 (2012)CrossRefGoogle Scholar
  7. 7.
    A.A. Bhagat, M.K. Fayek, A.A. Hamalaway, N.A. Eissaf, J. Phys. C Solid State Phys. 13, 2601–2608 (1980)CrossRefGoogle Scholar
  8. 8.
    Y. Hotta, S. Ozeki, T. Suzuki, J. Imai, K. Kaneko, Langmuir 7, 2649–2653 (1991)CrossRefGoogle Scholar
  9. 9.
    R. Srivastava, S. Singh, B.C Yadav, Int. J. Green Nanotechnol. 4(3), 215–218 (2012)CrossRefGoogle Scholar
  10. 10.
    C.L. Zhu, Y.J. Chen, R.X. Wang, L.J. Wang, M.S. Cao, X.L. Shi, Sens. Actuators B 140, 185–189 (2009)CrossRefGoogle Scholar
  11. 11.
    R. Srivastava, B.C. Yadav, J. Sci. Technol. Res. 3(2), 43–45 (2013)Google Scholar
  12. 12.
    A. Davydov, K.T. Chuang, A.R. Sanger, J. Phys. Chem. B 102, 4745–4752 (1998)CrossRefGoogle Scholar
  13. 13.
    S. Singh, V. Gupta, B.C. Yadav, P. Tandon, A.K. Singh, Sens. Actuators B 195, 373–381 (2014)CrossRefGoogle Scholar
  14. 14.
    X. Gou, G. Wang, J. Park, H. Liu, J. Yang, Nanotechnology 19, 125606–125613 (2008)CrossRefGoogle Scholar
  15. 15.
    A. Singh, S. Singh, B.D. Joshi, A. Shukla, B.C. Yadav, P. Tandon, Mater. Sci. Semicond. Process. 27, 934–950 (2014)CrossRefGoogle Scholar
  16. 16.
    S. Singh, A. Singh, B.C. Yadav, P. Tandon, Mater. Sci. Semicond. Process. 23, 122–135 (2014)CrossRefGoogle Scholar
  17. 17.
    Z. Jing, S. Wu, Synth. Mater. Lett. 60, 952–956 (2006)CrossRefGoogle Scholar
  18. 18.
    C. Xiangfeng, J. Dongli, Z. Chenmou, Sens. Actuators B 123, 793–797 (2007)CrossRefGoogle Scholar
  19. 19.
    S. Singh, B.C. Yadav, M. Singh, R. Kothari, Int. J. Sci. Technol. Soc. 1(1), 4–15 (2015)Google Scholar
  20. 20.
    B.S. Kang, H.T. Wang, L.C. Tien, F. Ren, B.P. Gila, D.P. Norton, C.R. Abernathy, J. Lin, S.J. Pearton, Sensors 6, 643–666 (2006)CrossRefGoogle Scholar
  21. 21.
    A. Singh, A. Singh, S. Singh, P. Tandon, B.C. Yadav, R.R. Yadav, J. Alloys Compd. 618, 475–483 (2015)CrossRefGoogle Scholar
  22. 22.
    A.K. Lagashetty, H. Vijayanand, S. Basavaraja, M.D. Bedre, A. Venkataraman, J. Therm. Anal. Calorim. 99, 577–581 (2010)CrossRefGoogle Scholar
  23. 23.
    S. Shi, J.Y. Hwang, J. Miner. Mater. Charact. Eng. 2, 101–110 (2003)Google Scholar
  24. 24.
    J.H. Bang, K.S. Suslick, J. Am. Chem. Soc. 129, 2242–2243 (2007)CrossRefGoogle Scholar
  25. 25.
    A. Venkataraman, V.A. Hiremath, S.K. Date, S.D Kulkarni, Bull. Mater. Sci. 24, 617–621 (2001)CrossRefGoogle Scholar
  26. 26.
    Z. Jing, Mater. Lett. 60, 3315–3318 (2006)CrossRefGoogle Scholar
  27. 27.
    S.K. Mohapatra, S. Banerjee, M. Misra, Nanotechnology 19, 315601–315607 (2008)CrossRefGoogle Scholar
  28. 28.
    N. Barsan, U. Weimar, J. Electroceram. 7, 143–167 (2001)CrossRefGoogle Scholar
  29. 29.
    Y. Xiaojuan, C. Naisheng, S. Shuifa, L. Ersheng, H. Jinling, Sci. China Ser. B Chem. 41, 442–448 (1998)Google Scholar
  30. 30.
    O. Lupan, V. Cretu, V. Postica, N. Ababii, O. Polonskyi, V. Kaidas et al., Sens. Actuators B 224, 434–448 (2016)CrossRefGoogle Scholar
  31. 31.
    B.C. Yadav, S. Singh, T.P. Yadav, Synth. React. Inorg. Metal Org. Nano Metal Chem. 45, 487–494 (2015)CrossRefGoogle Scholar
  32. 32.
    Y.K. Mishra, G. Modi, V. Cretu, V. Postica, O. Lupan, T. Reimer et al., ACS Appl. Mater. Interfaces 7, 14303–14316 (2015)CrossRefGoogle Scholar
  33. 33.
    C.N. Xu, J. Tamaki, N. Miura, N. Yamazoe, Sens. Actuators B 3, 147–155 (1991)CrossRefGoogle Scholar
  34. 34.
    B.K. Kim, S.-D. Choi, Sens. Actuators B 98, 239–246 (2004)CrossRefGoogle Scholar
  35. 35.
    M. Shoyama, N. Hashimoto, Sens. Actuators B 93, 585–589 (2003)CrossRefGoogle Scholar
  36. 36.
    G. Korotchenkov, Sens. Actuators B 107, 209–232 (2005)CrossRefGoogle Scholar
  37. 37.
    U. Ciesla, F. Schüth, Micropor. Mesopor. Mater. 27, 131–149 (1999)CrossRefGoogle Scholar
  38. 38.
    P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Nature 396, 152–155 (1998)CrossRefGoogle Scholar
  39. 39.
    J.K. Shon, S.S. Kong, Y.S. Kim, J.H. Lee, W.K. Park, S.C. Park, J.M. Kim, Micropor. Mesopor. Mater. 120, 441–446 (2009)CrossRefGoogle Scholar
  40. 40.
    R.K. Sonker, B.C. Yadav, A. Sharma, M. Tomar, V. Gupta, RSC Adv. 6, 56149–56158 (2016)CrossRefGoogle Scholar
  41. 41.
    Rakesh K. Sonker, B.C. Yadav, Mater. Lett. 160, 581–584 (2015)CrossRefGoogle Scholar
  42. 42.
    W. Yue, W. Zhou, Progr. Nat. Sci. 18, 1329–1338 (2008)CrossRefGoogle Scholar
  43. 43.
    G.S. Devi, T. Hyodo, Y. Shimizu, M. Egashira, Sens. Actuators B 87, 122–129 (2002)CrossRefGoogle Scholar
  44. 44.
    T. Hyodo, Y. Shimizu, M. Egashira, Sens. Actuators B 93, 590–600 (2003)CrossRefGoogle Scholar
  45. 45.
    T. Wagner, T. Waitz, J. Roggenbuck, M. Fröba, C.D. Kohl, M. Tiemann, Thin Solid Film 515, 8360–8363 (2007)CrossRefGoogle Scholar
  46. 46.
    J. Yang, K. Hidajat, S. Kawi, Mater. Lett. 62, 1441–1443 (2008)CrossRefGoogle Scholar
  47. 47.
    T. Wagner, C.D. Kohl, M. Fröba, M. Tiemann, Sensors 6, 318–323 (2006)CrossRefGoogle Scholar
  48. 48.
    C.Y. Liu, C.F. Chen, J.P. Leu, Electrochem. Solid. State Lett. 156, J16–J19 (2009)Google Scholar
  49. 49.
    I. Paulowicz, V. Hrkac, S. Kaps, V. Cretu, O. Lupan, T. Braniste, et al., Adv. Electron. Mater. 1, 1500081 (2015)CrossRefGoogle Scholar
  50. 50.
    Q. Liu, W.M. Zhang, Z.M. Cui, B. Zhang, L.J. Wan, W.G. Song, Micropor. Mesopor. Mater. 100, 233–240, (2007)CrossRefGoogle Scholar
  51. 51.
    S. Tao, X. Liu, X. Chu, Y. Shen, Sens. Actuators B 61, 33–38 (1999)CrossRefGoogle Scholar
  52. 52.
    A. Gurlo, M. Sahm, A. Oprea, N. Barsan, U. Wiemar, Sens. Actuators B 102, 291–298 (2004)CrossRefGoogle Scholar
  53. 53.
    L. Huo, Q. Li, H. Zhao, L. Yu, S. Gao, J. Zhao, Sens. Actuators B 107, 915–920 (2005)CrossRefGoogle Scholar
  54. 54.
    J. Jing, Y. Wang, S. Wu, Sens. Actuators B 113, 177–181 (2006)CrossRefGoogle Scholar
  55. 55.
    I. Ray, S. Chakraborty, A. Chowdhury, S. Majumdar, A. Prakash, R. Pyare, A. Sen, Sens. Actuators B 130, 882–888 (2008)CrossRefGoogle Scholar
  56. 56.
    E. Subramanian, J.O. Baeg, S.M. Lee, S.J. Moon, K.J. Kong, Int. J. Hydrog. Energy 34, 8485–8494 (2009)CrossRefGoogle Scholar
  57. 57.
    F. Retting, R. Moos, Sens. Actuators B 145, 685–690 (2010)CrossRefGoogle Scholar
  58. 58.
    P. Guo, Z. Wei, B. Wang, Y. Ding, H. Li, G. Zhang, X.S. Zhao, Coll. Surf. A Physicochem. Eng. Asp. 380, 234–240 (2011)CrossRefGoogle Scholar
  59. 59.
    S.S. Shinde, A.V. Mohalkar, J.H. Kim, K.Y. Rajpure, Surf. Coat. Technol. 205, 3567–3577 (2011)CrossRefGoogle Scholar
  60. 60.
    L. Duraesa, A. Moutinhoa, I.J. Seabra, B.F.O. Costa, H.C. de Sousa, A. Portugal, Mater. Chem. Phys. 130, 548–560 (2011)CrossRefGoogle Scholar
  61. 61.
    B.C. Yadav, S. Singh, A. Yadav, T. Shukla, Int. J. Nanosci. 10(1, 2) 135–139 (2011)CrossRefGoogle Scholar
  62. 62.
    S. Singh, N. Verma, B.C. Yadav, R. Prakash, Appl. Surf. Sci. 258, 8780–8789 (2012)CrossRefGoogle Scholar
  63. 63.
    Y. Cao, H. Luo, D. Jia, Sens. Actuators B 176, 618–624 (2013)CrossRefGoogle Scholar
  64. 64.
    X.H. Ma, X.Y. Feng, C. Song, B.K. Zou, C.X. Ding, Y. Yu, C.H. Chen, Electrochim. Acta 93, 131–136 (2013)CrossRefGoogle Scholar
  65. 65.
    A. Hasanpour, M. Niyaifar, M. Asan, J. Amighian, J. Magn. Magn. Mater. 334, 44–44 (2013)CrossRefGoogle Scholar
  66. 66.
    L. Geng, S. Wu, Mater. Res. Bull. 48, 4339–4343 (2013)CrossRefGoogle Scholar
  67. 67.
    G. Pathan, D.N. Suryawanshi, A.R. Bari, D.S. Rane, L.A. Patil, Adv. Nanomater. Nanotech. 143, 143–157 (2013)CrossRefGoogle Scholar
  68. 68.
    S. Baruah, J. Dutta, Sci. Technol. Adv. Mater. 12, 013004–013021 (2011)CrossRefGoogle Scholar
  69. 69.
    Y. Cao, D. Jia, J. Zhou, Y. Sun, Eur. J. Inorg. Chem. 27, 4105–4109 (2009)CrossRefGoogle Scholar
  70. 70.
    R. Srivastava, B.C. Yadav, J. Exp. Nanosci. 10(9), 1–15 (2014)Google Scholar
  71. 71.
    R. Kumar, S. Singh, B.C. Yadav, Int. Adv. Res. J. Sci. Eng. Tech. 2(11), 110–124 (2015)Google Scholar
  72. 72.
    B.C. Yadav, S. Sikarwar, A. Bhadiri, P. Kumar, Int. Adv. Res. J. Sci. Eng. Tech. 2(11), 105–109 (2015)Google Scholar
  73. 73.
  74. 74.
    S. Sikarwar, B.C. Yadav, Sens. Actuators A Phys. 233, 54–70 (2015)CrossRefGoogle Scholar
  75. 75.
    S. Singh, A. Singh, M. Wan, R.R. Yadav, P. Tandon, S.S.A. Rasool, B.C. Yadav, Sens. Actuators B Chem. 205, 102–110 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • B. C. Yadav
    • 1
  • K. S. Chauhan
    • 1
  • S. Singh
    • 2
  • R. K. Sonker
    • 1
  • S. Sikarwar
    • 1
  • R. Kumar
    • 1
  1. 1.Department of Applied PhysicsBabasaheb Bhimrao Ambedkar UniversityLucknowIndia
  2. 2.Department of PhysicsUniversity of AllahabadAllahabadIndia

Personalised recommendations