Synthesis and characterization of TiO2–NiO and TiO2–WO3 nanocomposites

  • P. Pandi
  • C. Gopinathan


TiO2–NiO and TiO2–WO3 nanocomposites were prepared by hydrothermal and surface modification methods. The samples were analyzed using X-ray diffraction, Scanning Electron Microscope images, Transmission Electron Microscope, Energy dispersive analysis, Zeta potential, Electrophoretic mobility and Photocatalysis activity measurement. XRD data sets of TiO2–NiO, TiO2–WO3 powder nanocomposite have been studied for the inclusion of NiO, WO3 on the anatase-rutile mixture phase of TiO2 by Rietveld refinement. The cell parameters, phase fraction, the average grain size, strain and bond lengths between atoms of individual phases have been reported in the present work. Shifted positional co-ordinates of individual atoms in each phase have also been observed.


TiO2 Rutile Photocatalytic Activity TiO2 Nanoparticles Photogenerated Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

10854_2016_6179_MOESM1_ESM.docx (70 kb)
Supplementary material 1 (DOCX 70 KB)


  1. 1.
    S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Precipitation synthesis, characterization, morphological control and photocatalyst application of ZnWO4 nanoparticles. J. Electron. Mater. 45(7), 3612–3620 (2016)CrossRefGoogle Scholar
  2. 2.
    S.M. Hosseinpour-Mashkani, M. Ramezani, A. Sobhani-Nasab, M. Esmaeil-Zare, Synthesis, characterization and morphological control of CaCu3Ti4O12 through modified sol-gel method. J. Mater. Sci. 26, 6086–6091 (2015)Google Scholar
  3. 3.
    S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Novel silver-doped CdMoO4: synthesis, characterization and its photocatalytic performance for methyl orange degredation through the sonochemical method. J. Mater. Sci. 27, 474–480 (2016)Google Scholar
  4. 4.
    S. Choi, M.-S. Lee, D.-W. Park, Photocatalytic performance of TiO2/V2O5 nanocomposite powder prepared by DC arc plasma. Curr. Appl Phys. 14, 433–438 (2014)CrossRefGoogle Scholar
  5. 5.
    K. Balachandran, R. Venckatesh, R. Sivaraj, P. Rajiv, TiO2 nanoparticles versus TiO2–SiO2 nanocomposites: a comparative study of photo catalysis on acid red 88. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 128, 468–474 (2014)CrossRefGoogle Scholar
  6. 6.
    J. Wang, Z. Jiang, L. Zhang, P. Kang, Y. Xie, Y. Lv, Xu Rui, X. Zhang, Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation. Ultrason. Sonochem. 16, 225–231 (2009)CrossRefGoogle Scholar
  7. 7.
    Z. Liu, K. Pan, M. Wang, M. liu, Q. Lü, Y. Bai, T. Li, Influence of the mixed ratio on the photocurrent of the TiO2/SnO2 composite photoelectrodes sensitized by mercurochrome. J. Photochem. Photobiol. A 157, 39–46 (2003)CrossRefGoogle Scholar
  8. 8.
    R. Subasri, T. Shinohara, Investigations on SnO2–TiO2 composite photoelectrodes for corrosion protection. Electrochem. Commun. 5, 897–902 (2003)CrossRefGoogle Scholar
  9. 9.
    G. Zhang, H. Huang, L. Wenfang, Y. Fei, W. Huijun, L. Zhou, Enhanced photocatalytic activity of CoO/TiO2 nanotube composite”. Electrochim. Acta 81, 117–122 (2012)CrossRefGoogle Scholar
  10. 10.
    H. Qin, W. Congcong, L. Cao, B. Chi, J. Pu, L. Jian, A novel TiO2 nanowires/nanoparticles composite photoanode with SrO shell coating for high performance dye-sensitized solar cell. J. Power Sources 226, 8–15 (2013)CrossRefGoogle Scholar
  11. 11.
    X. Qi, G. Su, G. Bo, L. Cao, W. Liu, Synthesis of NiO and NiO/TiO2 films with electrochromic and photocatalytic activities. Surf. Coat. Technol. 272, 79–85 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Liang, M. Liu, T. Peng, K. Fan, L. Lu, K. Dai, Fabrication and properties of meso-macroporous electrodes screen-printed from mesoporous titania nanoparticles for dye-sensitized solar cells. Mater. Chem. Phys. 118, 477–483 (2009)CrossRefGoogle Scholar
  13. 13.
    G.-S. Guo, H. Chao-Nan, Z.-H. Wang, F.-B. Gu, D.-M. Han, Synthesis of titania and titanate nanomaterials and their application in environmental analytical chemistry”. Talanta 72, 1687–1692 (2007)CrossRefGoogle Scholar
  14. 14.
    Y. Liu, C.-Y. Liu, Q.-H. Rong, Z. Zhang, Characteristics of the silver-doped TiO2 nanoparticles. Appl. Surf. Sci. 220, 7–11 (2003)CrossRefGoogle Scholar
  15. 15.
    B. Jiang, H. Yin, T. Jiang, J. Yan, Z. Fan, L. Changsheng, W. Jing, Y. Wada, Size-controlled synthesis of anatase TiO2 nanoparticles by carboxylic acid group-containing organics. Mater. Chem. Phys. 92, 595–599 (2005)CrossRefGoogle Scholar
  16. 16.
    S. Nakade, S. Kambe, M. Matsuda, Y. Saito, T. Kitamura, Y. Wada, S. Yanagida, Electron transport in electrodes consisting of metal oxide nano-particles filled with electrolyte solution. Physica E 14, 210–214 (2002)CrossRefGoogle Scholar
  17. 17.
    B. Tan, B. Gao, J. Guo, X. Guo, M. Long, A comparison of TiO2 coated self-cleaning cotton by the sols from peptizing and hydrothermal routes. Surf. Coat. Technol. 232, 26–32 (2013)CrossRefGoogle Scholar
  18. 18.
    Y.-F. Li, W.-P. Zhang, X. Li, Y. Yu, TiO2 nanoparticles with high ability for selective adsorption and photodegradation of textile dyes under visible light by feasible preparation. J. Phys. Chem. Solids 75, 86–93 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Fana, L. Zhenzhen, W. Zhou, Y. Miao, Y. Zhang, J. Hu, G. Shao, Dye-sensitized solar cells based on TiO2 nanoparticles/nanobelts double-layered film with improved photovoltaic performance. Appl. Surf. Sci. 319, 75–82 (2014)CrossRefGoogle Scholar
  20. 20.
    A. Chowdhury, A. Kudo, T. Fujita, M.-W. Chen, T. Adschiri, Nano-twinned structure and photocatalytic properties under visible light for undoped nano-titania synthesised by hydrothermal reaction in water–ethanol mixture. J. Supercrit. Fluids 58, 136–141 (2011)CrossRefGoogle Scholar
  21. 21.
    D. Zhang, T. Yoshida, K. Furuta, H. Minoura, Hydrothermal preparation of porous nano-crystalline TiO2 electrodes for flexible solar cells. J. Photochem. Photobiol. A 164, 159–166 (2004)CrossRefGoogle Scholar
  22. 22.
    W. Sigmund, H. EI-Shall, D.O. Shah, B.M. Moudgil, Particulate Systems in Nano and Biotechnologie. (CRC press, Taylor and Francis Group, Boca Raton, 2009)Google Scholar
  23. 23.
    P. Mohanty, S. Saravanakumar, R. Saravanan, C. Rath, TiO2 nanowires grown from nanoparticles: structure and charge density study. J. Nanosci. Nanotechnol. 13, 1–7 (2013)CrossRefGoogle Scholar
  24. 24.
    V. Petricek, M. Dusek, L. Palatinus, The Crystallographic Computing System. (Institute of Physics, Prague, 2006)Google Scholar
  25. 25.
    S. Saravanakumar, R. Saravanan, S. Sasikumar, Effect of sintering temperature on magnetic properties and charge density distribution of nano-NiO. Chem. Paper (2013). doi: 10.2478/s11696-013-0519-1 Google Scholar
  26. 26.
    P.M. Woodward, A.W. Sleight, T. Vogt, Structure refinement of triclinic tungsten trioxide. J. Phys. Chem. Solids 56(10), 1305–1315 (1995)CrossRefGoogle Scholar
  27. 27.
    E. Indrea, E. Bica, E.-J. Popovici, R.-C. Suciu, M.C. Rosu, T.-D. Silipas, Rietveld refinement of powder X-ray diffraction of nanocrystalline noble metals-tungsten trioxide. Rev. Roum. Chim. 56(6), 589–593 (2011)Google Scholar
  28. 28.
    Y. Ku, C.-N. Lin, W.-M. Hou, Characterization of coupled NiO/TiO2 photocatalyst for the photocatalytic reduction of Cr(VI) in aqueous solution. J. Mol. Catal. A 349, 20–27 (2011)CrossRefGoogle Scholar
  29. 29.
    K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)CrossRefGoogle Scholar
  30. 30.
    D.T. Cromer, R. Herrington, The structure of anatase and rutile. J. Am. Chem. Soc. 77(18), 4708–4709 (1954)CrossRefGoogle Scholar
  31. 31.
    L. Vegard, Result of crystal analysis. Phil. Mag. 32(187), 65–96 (1916)CrossRefGoogle Scholar
  32. 32.
    P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschanften zu Göttingen 26, 98–100 (1918)Google Scholar
  33. 33.
    J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Solar Energy, School of Energy SciencesMadurai Kamaraj UniversityMaduraiIndia

Personalised recommendations