Photoelectrochemical performance of surfactant (polyvinyl alcohol) assisted PbS thin films grown by chemical route

  • S. S. Nikam
  • M. P. Suryawanshi
  • M. A. Gaikwad
  • J. H. Kim
  • A. V. Moholkar


Polyvinyl alcohol is used as a surfactant in the chemical bath deposition of PbS thin films, which causes compact, pinhole free and uniform PbS thin films. Influence of deposition time on the structural, optical, morphological, compositional, electro-chemical and photo-electrochemical (PEC) properties of the PbS thin films are studied. The charge transfer resistance is analysed using electrochemical impedance spectroscopy. The best PEC device fabricated using optimized deposition time (3 h) showed short circuit current density (Jsc) of 1.68 mA. After annealing the optimised P63 sample at 75 °C for 1.5 h the composition changed from Pb rich to near stoichiometric. For typical PA sample Jsc improves to 2.13 mA and photo conversion efficiency advances from 0.045 to 0.072%.


Chemical Bath Deposition Heterojunction Solar Cell Short Circuit Current Density Photoelectrochemical Performance Reaction Bath 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors wish to acknowledge the DAE-BRNS, Mumbai, India for financial support through major research project (No. 2013/36/29-BRNS/2351) and Physics Instrumentation Facility Centre (PIFC), Department of Physics, Shivaji University, Kolhapur for facilitating characterization facilities. The authors are also thankful to Miss. A. B. Nagare for the her significant effort for improving the quality of SEM images. One of the authors (S. S. Nikam) is thankful to UGC New Delhi, for awarding fellowship through UGC-BSR scheme.


  1. 1.
    C. Piliego, L. Protesescu, S.Z. Bisri, M.V. Kovalenko, M.A. Loi, Energy Environ. Sci. 6 3054–3059 (2013)CrossRefGoogle Scholar
  2. 2.
    H.A. Mohamed, Philos. Mag. 94, 3467–3486 (2014)CrossRefGoogle Scholar
  3. 3.
    T. Kawawaki, H. Wang, T. Kubo, K. Saito, J. Nakazaki, H. Segawa, T. Tatsuma, ACS Nano. 4, 4165–4172 (2015)CrossRefGoogle Scholar
  4. 4.
    M.C. Beard, J. Phys. Chem. Lett. 2, 1282–1288 (2011)CrossRefGoogle Scholar
  5. 5.
    A.H. Khan, Q. Ji, K. Ariga, U. Thupakulaa, S. Acharya, J. Mater. Chem. 21, 5671–5676 (2011)CrossRefGoogle Scholar
  6. 6.
    K.S. Babu, C. Vijayanb, R. Devanathan, Mater Lett. 58, 1223–1226 (2004)CrossRefGoogle Scholar
  7. 7.
    D. Vankhade, A. Kothari, T.K. Chaudhuri, J. Electron. Mater. 45 2789–2795 (2016)CrossRefGoogle Scholar
  8. 8.
    K.A. Fliszar, R.J. Forsyth, Z. Li, G.P. Martin, Dissol. Technol. 12, (2005)Google Scholar
  9. 9.
    S. Senguptaa, M. Pereza, A. Rabkina, Y. Golan, Cryst. Eng. Comm. 18, 149–156 (2016)CrossRefGoogle Scholar
  10. 10.
    D.H. Yeon, S.M. Lee, Y.H. Jo, J. Moon, S.Y. Cho, J. Mater. Chem. A, 20112–20117 (2014)Google Scholar
  11. 11.
    B. Altıokka, M.C. Baykul, M.R. Altıokka, J. Cry. Growth 384 50–54 (2013)CrossRefGoogle Scholar
  12. 12.
    B. Altıokka, Arab. J. Sci. Eng. 40 2085–2093 (2015)CrossRefGoogle Scholar
  13. 13.
    K. Holmberg, B. Jonsson, B. Kronberg, B. Lindman, Surfactants and Polymers in Aqueous Solution. (Wiley, West Sussex, 2002)Google Scholar
  14. 14.
    Z. Wang, B. Huang, X. Liu, X. Qin, X. Zhang, J. Wei, P. Wang, S. Yao, Q. Zhang, X. Jing, Mater. Lett. 62, 2637–2639 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Jana, R. Thapa, R. Maity, K.K. Chattopadhyay, Physica. E 40 3121–3126 (2008)CrossRefGoogle Scholar
  16. 16.
    W.E. Mahmoud, S.H. Al-Heniti, Mater. Res. Bull. 46, 1366–1371 (2011)CrossRefGoogle Scholar
  17. 17.
    J.H. Borja, Y.V. Vorobiev, R.R. Bon, Sol. Energy Mater. Sol. Cells 95 1882–1888 (2011)CrossRefGoogle Scholar
  18. 18.
    A.S. Obaid, Z. Hassan, M.A. Mahdi, M. Bououdina, Sol. Energy 89, 143–151 (2013)CrossRefGoogle Scholar
  19. 19.
    M.A. Barote, A.A. Yadav, T.V. Chavan, E.U. Masumdar, Dig. J. Nanomater. Bios. 6 979–990 (2011)Google Scholar
  20. 20.
    I. Puspitasari, T.P. Gujar, K.D. Jung, O.S. Joo, Mat. Sci. Eng. B 140 199–202 (2007)CrossRefGoogle Scholar
  21. 21.
    S. Wang, S. Yang, Langmuir 16, 389–397 (2000)CrossRefGoogle Scholar
  22. 22.
    S.B. Pawar, J.S. Shaikh, R.S. Devan, Y.R. Ma, D. Haranath, P.N. Bhosale, P.S. Patil, Appl. Surf. Sci. 258 1869–1875 (2011)CrossRefGoogle Scholar
  23. 23.
    M. Wang, P. Chen, R. Humphry-Baker, S.M. Zakeeruddin, M. Gratzel, Chem. Phys. Chem. 10 290–299 (2009)Google Scholar
  24. 24.
    D. Kuang, C. Klein, Z. Zhang, S. Ito, J.E. Moser, S.M. Zakeeruddin, M. Gratzel, Small 3, 2094–2102 (2007)CrossRefGoogle Scholar
  25. 25.
    I. Pop, V. Ionescu, C. Nascu, V. Vomir, R. Grecu, E. Indrea, Thin Solid Films 283, 119–123 (1996)CrossRefGoogle Scholar
  26. 26.
    J. Gao, S. Jeong, F. Lin, P.T. Erslev, O.E. Semonin, J.M. Luther, M.C. Beard, Appl. Phys. Lett. 102, 043506 (2013)CrossRefGoogle Scholar
  27. 27.
    S.J. Baik, K. Kim, K.S. Lim, S.M. Jung, Y.C. Park, D.G. Han, S. Lim, S. Yoo, S. Jeong, J. Phys. Chem. C 115, 607–612 (2011)CrossRefGoogle Scholar
  28. 28.
    L. Turyanska, U. Elfurawi, M. Li, M.W. Fay, N.R. Thomas, S. Mann, J.H. Blokland, P.C.M. Christianen, A. Patane, Nanotechnology 20, 315604 (2009)CrossRefGoogle Scholar
  29. 29.
    M.M. Abbas, A.Ab-M. Shehab, N.A. Hassan, K.A. Al-Samuraee, Thin Solid Films 519, 4917–4922 (2011)CrossRefGoogle Scholar
  30. 30.
    E.J.D. Klem, H. Shukla, S. Hinds, D.D. MacNeil, L. Levina, H.E. Sargent, Appl. Phys. Lett. 92, 212105 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. S. Nikam
    • 1
  • M. P. Suryawanshi
    • 2
  • M. A. Gaikwad
    • 1
  • J. H. Kim
    • 2
  • A. V. Moholkar
    • 1
  1. 1.Thin Film Nanomaterials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  2. 2.Optoelectronics Convergence Research Center, Department of Materials Science and EngineeringChonnam National UniversityGwangjuSouth Korea

Personalised recommendations