Electrochemical performance of potentio-dynamically deposited Co3O4 electrodes: influence of annealing temperature



Co3O4 thin films were deposited potentiodynamically on to the stainless steel substrate. Prepared samples were annealed within the temperature range 473 K to 873 K by the interval of 100 K. XRD study reveals cubic crystal structure of Co3O4. FE-SEM showed compact agglomerated granular type morphology. Electrochemical characterization of electrodes showed pseudo capacitive behavior. Maximum value of specific capacitance (441.17 F/g) was achieved at the scan rate 2 mV/s in 1 M KOH with 87.88% stability. Charge–discharge curves showed nonlinear behavior and used to calculate the specific energy, specific power and columbic efficiency which were 20.98 W/kg, 15.96 kW/kg and 86.63% respectively. EIS of complex impedance spectra showed internal resistance ~0.9435 Ω.


Co3O4 Cobalt Oxide Cobalt Hydroxide Supercapacitive Performance Columbic Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors are grateful to thanks Bhabha Atomic Research Center (BARC), Mumbai for providing financial support through the project scheme 2010/34/46/BRNS/2228 and to Department of Science and Technology New Delhi for providing financial support through the project scheme DST-SERB, SB/EMEQ-331/2013.


  1. 1.
    R.F. Service, Science 313, 902 (2006)CrossRefGoogle Scholar
  2. 2.
    P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. Shitta-bey, G. Wilson, A. Cruden, R. Carter, Energy Environ. Sci. 3, 1238 (2010)CrossRefGoogle Scholar
  3. 3.
    H. Shi, Electrochim Acta 41, 1633 (1996)CrossRefGoogle Scholar
  4. 4.
    H. Pan, C.K. Poh, Y.P. Feng, J. Lin, Chem. Mater. 19, 6120 (2007)CrossRefGoogle Scholar
  5. 5.
    Q. Liao, N. Li, S. Jin, G. Yang, C. Wang, ACS Nano. 9, 5310 (2015)CrossRefGoogle Scholar
  6. 6.
    B. Wang, J.S. Chen, Z. Wang, S. Madhavi, X.W.D. Lou, Adv. Energy Mater. 2, 1188 (2012)CrossRefGoogle Scholar
  7. 7.
    N. Soin, S.S. Roy, S.K. Mitra, T. Thundat, J.A. McLaughlin, J. Mater. Chem. 22, 14944 (2012)CrossRefGoogle Scholar
  8. 8.
    B.E. Conway, J. Electrochem. Soc. 138, 1539 (1991)CrossRefGoogle Scholar
  9. 9.
    T. Maruyama, S. Arai, J. Electrochem. Soc. 143, 1383 (1996)CrossRefGoogle Scholar
  10. 10.
    W.L. Yao, J. Yang, J.L. Wang, L. Tao, Electrochim. Acta 53, 7326 (2008)CrossRefGoogle Scholar
  11. 11.
    X.W. lou, D. Deng, J.Y. Lee, J. Feng, L.A. Archer, Adv. Mater. 20, 258 (2008)CrossRefGoogle Scholar
  12. 12.
    L. Man, B. Niu, H. Xu, B. Cao, J. Wang, Mater. Res. Bull. 46, 1097 (2011)CrossRefGoogle Scholar
  13. 13.
    Y. Zhang, Y. Chen, T. Wang, J. Zhou, Y. Zhao, Micropor. Mesopor. Mater. 114, 257 (2008)CrossRefGoogle Scholar
  14. 14.
    C. Yuan, L. Yang, L. Hou, L. Shen, F. Zhang, D. Li, X. Zhang, J. Mater. Chem. 21, 18183 (2011)CrossRefGoogle Scholar
  15. 15.
    W. Yanga, Z. Gao, J. Maa, J. Wanga, B. Wanga, L. Liua, Electrochim. Acta 112, 378 (2013)CrossRefGoogle Scholar
  16. 16.
    X.H. Xia, J.P. Tu, J. Zhang, X.H. Huang, X.L. Wang, W.K. Zhang, H. Huang, Electrochem. Commun. 10, 1815 (2008)CrossRefGoogle Scholar
  17. 17.
    M. Qorbani, N. Naseri, A.Z. Moshfegh, ACS Appl. Mater. Interfaces 7, 11172 (2015)CrossRefGoogle Scholar
  18. 18.
    A. Louardi, T. Chtouki, A. Rmili, B. Elidrissi, H. Erguig, Int. J. Appl. Eng. Res. 11, 1432 (2016)Google Scholar
  19. 19.
    R. Manogowri, R. Mary Mathelane, S. Valanarasu, I. Kulandaisamy, A. Benazir Fathima, A. Kathalingam, J. Mater Sci. Mater El 27, 3860 (2016)CrossRefGoogle Scholar
  20. 20.
    C.S. Chua, D. Ansovini, C.J.J. Lee, Y.T. Teng, L.T. ong, D. Chi, T.S.A. Hor, R. Raja, Y. Lim, Phys. Chem. Chem. Phys. 18, 5172 (2016)CrossRefGoogle Scholar
  21. 21.
    D. Yan, Z. Guo, G. Zhu, Z. Yu, A.H. Xu Yu, J. Power Sources 199, 409 (2012)CrossRefGoogle Scholar
  22. 22.
    J. Gao, Y. Zhao, W. Yang, J. Tian, F. Guan, Y. Ma, J. Univ. Sci. Technol. Beijing 10, 54 (2003)Google Scholar
  23. 23.
    H. Shim, V.R. Shinde, H. Kim, Y. Sung, W. Kim, Thin Solid Films 516, 8573 (2008)CrossRefGoogle Scholar
  24. 24.
    V. Patil, P. Joshi, M. Chougule, S. Sen, Soft Nanosci. Lett. 2, 1 (2012)CrossRefGoogle Scholar
  25. 25.
    J.P. Zheng, P.J. Cygan, T.R. Jow, J. Electrochem. Soc. 23, 2699 (1995)CrossRefGoogle Scholar
  26. 26.
    V.D. Patake, C.D. Lokhande, O.S. Joo, Appl. Surf. Sci. 255, 4192 (2009)CrossRefGoogle Scholar
  27. 27.
    M. Skompska, K. Zarębska, Electrochim. Acta 127, 467 (2014)CrossRefGoogle Scholar
  28. 28.
    R.C. Ambare, S.R. Bharadwaj, B.J. Lokhande, Curr. Appl. Phys. 14, 1582 (2014)CrossRefGoogle Scholar
  29. 29.
    A. Elsakhi S. M. Hamed, M.A. Siddig, A.A. Elbadawi, M.A.I. Mohamed Elhadi, Int. J. Sci. Res. Innov. Technol. 2, 2313 (2015)Google Scholar
  30. 30.
    R.R. Salunkhe, D.S. Dhawale, T.P. Gujar, C.D. Lokhande, Mater. Res. Bull. 44, 364 (2009)CrossRefGoogle Scholar
  31. 31.
    R.D. Sun, A. Nakajima, A. Fujushima, T. Watanabe, K. Hashimoto, J. Phys. Chem. B 105, 1984 (2001)CrossRefGoogle Scholar
  32. 32.
    A.D. Jagadale, V.S. Kumbhar, R.N. Bulakhe, C.D. Lokhande, Energy 64, 234 (2014)CrossRefGoogle Scholar
  33. 33.
    C. Hu, T. Tsou, J. Power Sources 115, 179 (2003)CrossRefGoogle Scholar
  34. 34.
    J.A. Koza, He Zhen, A.S. Miller, J.A. Switzer, Chem. Mater. 24, 3567 (2012)CrossRefGoogle Scholar
  35. 35.
    S. Koneshan, J.C. Rasaiah, R.M. Lynden-Bell, S.H. Lee, J. Phys. Chem. B 102, 4193 (1998)CrossRefGoogle Scholar
  36. 36.
    J. Yana, T. Wei, W. Qiao, B. Shao, Q. Zhao, L. Zhang, Z. Fan, Electrochim. Acta 55, 6973 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Physical SciencesSolapur UniversitySolapurIndia

Personalised recommendations